Suppr超能文献

在微图案化细胞中,将微丝调节的细胞膜张力可视化为“减震器” 。

Visualization of Cell Membrane Tension Regulated by the Microfilaments as a "Shock Absorber" in Micropatterned Cells.

作者信息

Wang Xianmeng, Li Na, Zhang Zhengyao, Qin Kairong, Zhang Hangyu, Shao Shuai, Liu Bo

机构信息

School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China.

Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China.

出版信息

Biology (Basel). 2023 Jun 20;12(6):889. doi: 10.3390/biology12060889.

Abstract

The extracellular stress signal transmits along the cell membrane-cytoskeleton-focal adhesions (FAs) complex, regulating the cell function through membrane tension. However, the mechanism of the complex regulating membrane tension is still unclear. This study designed polydimethylsiloxane stamps with specific shapes to change the actin filaments' arrangement and FAs' distribution artificially in live cells, visualized the membrane tension in real time, and introduced the concept of information entropy to describe the order degree of the actin filaments and plasma membrane tension. The results showed that the actin filaments' arrangement and FAs' distribution in the patterned cells were changed significantly. The hypertonic solution resulted in the plasma membrane tension of the pattern cell changing more evenly and slowly in the zone rich in cytoskeletal filaments than in the zone lacking filaments. In addition, the membrane tension changed less in the adhesive area than in the non-adhesive area when destroying the cytoskeletal microfilaments. This suggested that patterned cells accumulated more actin filaments in the zone where FAs were difficult to generate to maintain the stability of the overall membrane tension. The actin filaments act as shock absorbers to cushion the alternation in membrane tension without changing the final value of membrane tension.

摘要

细胞外应激信号沿着细胞膜-细胞骨架-黏着斑(FAs)复合体进行传递,通过膜张力调节细胞功能。然而,该复合体调节膜张力的机制仍不清楚。本研究设计了具有特定形状的聚二甲基硅氧烷压模,以在活细胞中人为改变肌动蛋白丝的排列和FAs的分布,实时可视化膜张力,并引入信息熵的概念来描述肌动蛋白丝的有序程度和质膜张力。结果表明,图案化细胞中肌动蛋白丝的排列和FAs的分布发生了显著变化。高渗溶液导致图案化细胞的质膜张力在富含细胞骨架丝的区域比在缺乏丝的区域变化更均匀、更缓慢。此外,破坏细胞骨架微丝时,黏附区域的膜张力变化比非黏附区域小。这表明图案化细胞在难以产生FAs的区域积累了更多的肌动蛋白丝,以维持整体膜张力的稳定性。肌动蛋白丝起到减震器的作用,在不改变膜张力最终值的情况下缓冲膜张力的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b24c/10295218/69e6780aafae/biology-12-00889-g001.jpg

相似文献

2
Microfilaments in cellular and developmental processes.
Science. 1971 Jan 15;171(3967):135-43. doi: 10.1126/science.171.3967.135.
3
Spatial organization of lysosomal exocytosis relies on membrane tension gradients.
Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2207425120. doi: 10.1073/pnas.2207425120. Epub 2023 Feb 17.
5
Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins.
J Phys Condens Matter. 2010 May 19;22(19):194109. doi: 10.1088/0953-8984/22/19/194109. Epub 2010 Apr 26.
6
Flow-induced focal adhesion remodeling mediated by local cytoskeletal stresses and reorganization.
Cell Adh Migr. 2015;9(6):432-40. doi: 10.1080/19336918.2015.1089379.
7
Dynamics of actin filaments during tension-dependent formation of actin bundles.
Biochim Biophys Acta. 2007 Aug;1770(8):1115-27. doi: 10.1016/j.bbagen.2007.03.010. Epub 2007 Mar 31.
8
The coordination between actin filaments and adhesion in mesenchymal migration.
Cell Adh Migr. 2009 Oct-Dec;3(4):355-7. doi: 10.4161/cam.3.4.9468. Epub 2009 Oct 8.
9
Fascin plays a role in stress fiber organization and focal adhesion disassembly.
Curr Biol. 2014 Jul 7;24(13):1492-9. doi: 10.1016/j.cub.2014.05.023. Epub 2014 Jun 12.
10
Assembly and mechanosensory function of focal adhesions: experiments and models.
Eur J Cell Biol. 2006 Apr;85(3-4):165-73. doi: 10.1016/j.ejcb.2005.11.001. Epub 2005 Dec 19.

本文引用的文献

1
Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions.
Nat Rev Mol Cell Biol. 2023 Feb;24(2):142-161. doi: 10.1038/s41580-022-00531-5. Epub 2022 Sep 27.
2
Mechanistic insights into actin force generation during vesicle formation from cryo-electron tomography.
Dev Cell. 2022 May 9;57(9):1132-1145.e5. doi: 10.1016/j.devcel.2022.04.012. Epub 2022 May 2.
3
Substrate rigidity modulates traction forces and stoichiometry of cell-matrix adhesions.
J Chem Phys. 2022 Feb 28;156(8):085101. doi: 10.1063/5.0077004.
4
The raft cytoskeleton binding protein complexes personate functional regulators in cell behaviors.
Acta Histochem. 2022 Feb;124(2):151859. doi: 10.1016/j.acthis.2022.151859. Epub 2022 Feb 3.
5
Mechanical compression enhances ciliary beating through cytoskeleton remodeling in human nasal epithelial cells.
Acta Biomater. 2021 Jul 1;128:346-356. doi: 10.1016/j.actbio.2021.04.030. Epub 2021 Apr 18.
6
Mechanics of the cell: Interaction mechanisms and mechanobiological models.
Curr Top Membr. 2020;86:143-184. doi: 10.1016/bs.ctm.2020.09.001. Epub 2020 Oct 2.
8
Direct monitoring of drug-induced mechanical response of individual cells by atomic force microscopy.
J Mol Recognit. 2020 Sep;33(9):e2847. doi: 10.1002/jmr.2847. Epub 2020 Mar 25.
9
Do Cell Membranes Flow Like Honey or Jiggle Like Jello?
Bioessays. 2020 Jan;42(1):e1900142. doi: 10.1002/bies.201900142. Epub 2019 Dec 11.
10
Cardiomyocyte mechanodynamics under conditions of actin remodelling.
Philos Trans R Soc Lond B Biol Sci. 2019 Nov 25;374(1786):20190081. doi: 10.1098/rstb.2019.0081. Epub 2019 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验