Suppr超能文献

由经典随机游走和量子游走驱动的强盗算法

Bandit Algorithm Driven by a Classical Random Walk and a Quantum Walk.

作者信息

Yamagami Tomoki, Segawa Etsuo, Mihana Takatomo, Röhm André, Horisaki Ryoichi, Naruse Makoto

机构信息

Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.

Graduate School of Environment and Information Sciences, Yokohama National University, 79-1 Tokiwadai, Hodogaya, Yokohama 240-8501, Kanagawa, Japan.

出版信息

Entropy (Basel). 2023 May 25;25(6):843. doi: 10.3390/e25060843.

Abstract

Quantum walks (QWs) have a property that classical random walks (RWs) do not possess-the coexistence of linear spreading and localization-and this property is utilized to implement various kinds of applications. This paper proposes RW- and QW-based algorithms for multi-armed-bandit (MAB) problems. We show that, under some settings, the QW-based model realizes higher performance than the corresponding RW-based one by associating the two operations that make MAB problems difficult-exploration and exploitation-with these two behaviors of QWs.

摘要

量子游走(QWs)具有一种经典随机游走(RWs)所不具备的特性——线性扩散与局域化的共存——并且这种特性被用于实现各种应用。本文针对多臂老虎机(MAB)问题提出了基于RW和QW的算法。我们表明,在某些设置下,基于QW的模型通过将使MAB问题变得困难的两种操作——探索和利用——与QW的这两种行为相关联,从而实现了比相应的基于RW的模型更高的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7314/10297529/705d80e0eeee/entropy-25-00843-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验