Wong Man-Fai, Guo Shangxin, Hang Ching-Nam, Ho Siu-Wai, Tan Chee-Wei
Department of Computer Science, City University of Hong Kong, Hong Kong, China.
Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China.
Entropy (Basel). 2023 Jun 1;25(6):888. doi: 10.3390/e25060888.
This paper provides a comprehensive review of the literature concerning the utilization of Natural Language Processing (NLP) techniques, with a particular focus on transformer-based large language models (LLMs) trained using Big Code, within the domain of AI-assisted programming tasks. LLMs, augmented with software naturalness, have played a crucial role in facilitating AI-assisted programming applications, including code generation, code completion, code translation, code refinement, code summarization, defect detection, and clone detection. Notable examples of such applications include the GitHub Copilot powered by OpenAI's Codex and DeepMind AlphaCode. This paper presents an overview of the major LLMs and their applications in downstream tasks related to AI-assisted programming. Furthermore, it explores the challenges and opportunities associated with incorporating NLP techniques with software naturalness in these applications, with a discussion on extending AI-assisted programming capabilities to Apple's Xcode for mobile software development. This paper also presents the challenges of and opportunities for incorporating NLP techniques with software naturalness, empowering developers with advanced coding assistance and streamlining the software development process.
本文全面回顾了有关自然语言处理(NLP)技术应用的文献,特别关注在人工智能辅助编程任务领域中,使用大代码(Big Code)训练的基于Transformer的大型语言模型(LLM)。具备软件自然性增强的LLM在推动人工智能辅助编程应用方面发挥了关键作用,这些应用包括代码生成、代码补全、代码翻译、代码优化、代码总结、缺陷检测和克隆检测。此类应用的显著例子包括由OpenAI的Codex驱动的GitHub Copilot和DeepMind AlphaCode。本文概述了主要的LLM及其在与人工智能辅助编程相关的下游任务中的应用。此外,探讨了在这些应用中结合NLP技术与软件自然性所面临的挑战和机遇,并讨论了将人工智能辅助编程能力扩展到用于移动软件开发的苹果Xcode的相关问题。本文还阐述了结合NLP技术与软件自然性所面临的挑战和机遇,为开发者提供先进的编码辅助并简化软件开发过程。