Suppr超能文献

基于神经网络的海水信道水下连续变量量子密钥分发密钥率预测

Neural Network-Based Prediction for Secret Key Rate of Underwater Continuous-Variable Quantum Key Distribution through a Seawater Channel.

作者信息

Mao Yun, Zhu Yiwu, Hu Hui, Luo Gaofeng, Wang Jinguang, Wang Yijun, Guo Ying

机构信息

School of Information Engineering, Shaoyang University, Shaoyang 422000, China.

School of Automation, Central South University, Changsha 410083, China.

出版信息

Entropy (Basel). 2023 Jun 14;25(6):937. doi: 10.3390/e25060937.

Abstract

Continuous-variable quantum key distribution (CVQKD) plays an important role in quantum communications, because of its compatible setup for optical implementation with low cost. For this paper, we considered a neural network approach to predicting the secret key rate of CVQKD with discrete modulation (DM) through an underwater channel. A long-short-term-memory-(LSTM)-based neural network (NN) model was employed, in order to demonstrate performance improvement when taking into account the secret key rate. The numerical simulations showed that the lower bound of the secret key rate could be achieved for a finite-size analysis, where the LSTM-based neural network (NN) was much better than that of the backward-propagation-(BP)-based neural network (NN). This approach helped to realize the fast derivation of the secret key rate of CVQKD through an underwater channel, indicating that it can be used for improving performance in practical quantum communications.

摘要

连续变量量子密钥分发(CVQKD)在量子通信中起着重要作用,因为其光学实现的设置成本低且具有兼容性。在本文中,我们考虑了一种神经网络方法,用于通过水下信道预测采用离散调制(DM)的CVQKD的密钥率。采用了基于长短期记忆(LSTM)的神经网络(NN)模型,以展示在考虑密钥率时的性能提升。数值模拟表明,对于有限尺寸分析,可以实现密钥率的下限,其中基于LSTM的神经网络(NN)比基于反向传播(BP)的神经网络(NN)要好得多。这种方法有助于通过水下信道快速推导CVQKD的密钥率,表明它可用于提高实际量子通信中的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd8/10297271/b93a3fcf5ff5/entropy-25-00937-g001.jpg

相似文献

4
Passive Continuous Variable Quantum Key Distribution through the Oceanic Turbulence.
Entropy (Basel). 2023 Feb 7;25(2):307. doi: 10.3390/e25020307.
6
Continuous-variable quantum key distribution coexisting with classical signals on few-mode fiber.
Opt Express. 2021 May 10;29(10):14486-14504. doi: 10.1364/OE.420583.
8
Indoor channel modeling for continuous variable quantum key distribution in the terahertz band.
Opt Express. 2020 Oct 26;28(22):32386-32402. doi: 10.1364/OE.405020.
10
Robust frame synchronization for continuous-variable quantum key distribution with coherent states.
Opt Express. 2023 Dec 18;31(26):43163-43177. doi: 10.1364/OE.500901.

引用本文的文献

2
Exploring dynamical whole-brain models in high-dimensional parameter spaces.
PLoS One. 2025 May 12;20(5):e0322983. doi: 10.1371/journal.pone.0322983. eCollection 2025.

本文引用的文献

3
Practical continuous-variable quantum secret sharing using plug-and-play dual-phase modulation.
Opt Express. 2022 Jan 31;30(3):3876-3892. doi: 10.1364/OE.450095.
4
Importance Sampling of Randomized Measurements for Probing Entanglement.
Phys Rev Lett. 2021 Nov 12;127(20):200503. doi: 10.1103/PhysRevLett.127.200503.
5
Experimental Simultaneous Learning of Multiple Nonclassical Correlations.
Phys Rev Lett. 2019 Nov 8;123(19):190401. doi: 10.1103/PhysRevLett.123.190401.
7
High-speed continuous-variable quantum key distribution without sending a local oscillator.
Opt Lett. 2015 Aug 15;40(16):3695-8. doi: 10.1364/OL.40.003695.
8
Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation.
Phys Rev Lett. 2009 May 8;102(18):180504. doi: 10.1103/PhysRevLett.102.180504. Epub 2009 May 6.
9
Squashing models for optical measurements in quantum communication.
Phys Rev Lett. 2008 Aug 29;101(9):093601. doi: 10.1103/PhysRevLett.101.093601. Epub 2008 Aug 25.
10
Quantum cryptography without switching.
Phys Rev Lett. 2004 Oct 22;93(17):170504. doi: 10.1103/PhysRevLett.93.170504.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验