Hao Dingyi, Huang Xiaoyu, Li Houmin, Cao Zhou, Yang Zijiang, Pei Xianfeng, Min Kai, Liu Cai, Li Wenchao, Zhang En, Shen Jie
School of Engineering, Architecture and The Environment, Hubei University of Technology, Wuhan 430068, China.
China Construction Third Bureau First Engineering Co., Ltd., Wuhan 430040, China.
Materials (Basel). 2023 Jun 19;16(12):4460. doi: 10.3390/ma16124460.
The incorporation of rubber can enhance concrete's durability and effectively reduce the damage caused by freeze-thaw cycling (FTC). Still, there has been only limited research on the damage mechanism of RC at the fine view level. To gain insight into the expansion process of uniaxial compression damage cracks in rubber concrete (RC) and summarize the internal temperature field distribution law during FTC, a fine RC thermodynamic model containing mortar, aggregate, rubber, water, and interfacial transition zone (ITZ) is established in this paper, and the cohesive element is selected for the ITZ part. The model can be used to study the mechanical properties of concrete before and after FTC. The validity of the calculation method was verified by comparing the calculated results of the compressive strength of concrete before and after FTC with the experimental results. On this basis, this study analyzed the compressive crack extension and internal temperature distribution of RC at 0, 5, 10, and 15% replacement rates before and after 0, 50, 100, and 150 cycles of FTC. The results showed that the fine-scale numerical simulation method can effectively reflect the mechanical properties of RC before and after FTC, and the computational results verify the applicability of the method to rubber concrete. The model can effectively reflect the uniaxial compression cracking pattern of RC before and after FTC. Incorporating rubber can impede temperature transfer and reduce the compressive strength loss caused by FTC in concrete. The FTC damage to RC can be reduced to a greater extent when the rubber incorporation is 10%.
掺入橡胶可以提高混凝土的耐久性,并有效减少冻融循环(FTC)造成的损伤。然而,在微观层面上,关于橡胶混凝土(RC)损伤机制的研究仍然有限。为了深入了解橡胶混凝土单轴压缩损伤裂缝的扩展过程,并总结冻融循环过程中的内部温度场分布规律,本文建立了一个包含砂浆、骨料、橡胶、水和界面过渡区(ITZ)的精细橡胶混凝土热力学模型,并对ITZ部分选用了粘结单元。该模型可用于研究冻融循环前后混凝土的力学性能。通过将冻融循环前后混凝土抗压强度的计算结果与试验结果进行对比,验证了计算方法的有效性。在此基础上,本研究分析了在0、50、100和150次冻融循环前后,橡胶掺量为0、5%、10%和15%时橡胶混凝土的压缩裂缝扩展和内部温度分布情况。结果表明,细观尺度数值模拟方法能够有效反映冻融循环前后橡胶混凝土的力学性能,计算结果验证了该方法对橡胶混凝土的适用性。该模型能够有效反映冻融循环前后橡胶混凝土的单轴压缩开裂模式。掺入橡胶可以阻碍温度传递,减少混凝土冻融循环引起的抗压强度损失。当橡胶掺量为10%时,可更大程度地降低冻融循环对橡胶混凝土的损伤。