Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.
Phys Chem Chem Phys. 2023 Jul 12;25(27):17923-17942. doi: 10.1039/d2cp04393a.
Narrow bandgap inorganic compounds are extremely important in many areas of physics. However, their basic parameter database for surface analysis is incomplete. Electron inelastic mean free paths (IMFPs) are important parameters in surface analysis methods, such as electron spectroscopy and electron microscopy. Our previous research has presented a machine learning (ML) method to describe and predict IMFPs from calculated IMFPs for 41 elemental solids. This paper extends the use of the same machine learning method to 42 inorganic compounds based on the experience in predicting elemental electron IMFPs. The in-depth discussion extends to including material dependence discussion and parameter value selections. After robust validation of the ML method, we have produced an extensive IMFP database for 12 039 narrow bandgap inorganic compounds. Our findings suggest that ML is very efficient and powerful for IMFP description and database completion for various materials and has many advantages, including stability and convenience, over traditional methods.
窄带隙无机化合物在物理学的许多领域都非常重要。然而,它们的表面分析基本参数数据库并不完整。电子非弹性平均自由程(IMFPs)是表面分析方法(如电子能谱和电子显微镜)中的重要参数。我们之前的研究提出了一种机器学习(ML)方法,用于描述和预测 41 种元素固体的计算 IMFPs 中的 IMFPs。本文基于预测元素电子 IMFPs 的经验,将相同的机器学习方法扩展到 42 种无机化合物。深入的讨论扩展到包括材料依赖性讨论和参数值选择。在对 ML 方法进行稳健验证后,我们为 12039 种窄带隙无机化合物生成了一个广泛的 IMFPs 数据库。我们的研究结果表明,ML 对于各种材料的 IMFPs 描述和数据库完成非常有效和强大,并且具有许多传统方法所不具备的优势,包括稳定性和便利性。