Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy.
Cardiology Department, Leiden University Medical Center, Leiden, the Netherlands.
Physiol Meas. 2023 Aug 24;44(8). doi: 10.1088/1361-6579/ace241.
. Acute myocardial ischemia in the setting of acute coronary syndrome (ACS) may lead to myocardial infarction. Therefore, timely decisions, already in the pre-hospital phase, are crucial to preserving cardiac function as much as possible. Serial electrocardiography, a comparison of the acute electrocardiogram with a previously recorded (reference) ECG of the same patient, aids in identifying ischemia-induced electrocardiographic changes by correcting for interindividual ECG variability. Recently, the combination of deep learning and serial electrocardiography provided promising results in detecting emerging cardiac diseases; thus, the aim of our current study is the application of our novel Advanced Repeated Structuring and Learning Procedure (AdvRS&LP), specifically designed for acute myocardial ischemia detection in the pre-hospital phase by using serial ECG features.. Data belong to the SUBTRACT study, which includes 1425 ECG pairs, 194 (14%) ACS patients, and 1035 (73%) controls. Each ECG pair was characterized by 28 serial features that, with sex and age, constituted the inputs of the AdvRS&LP, an automatic constructive procedure for creating supervised neural networks (NN). We created 100 NNs to compensate for statistical fluctuations due to random data divisions of a limited dataset. We compared the performance of the obtained NNs to a logistic regression (LR) procedure and the Glasgow program (Uni-G) in terms of area-under-the-curve (AUC) of the receiver-operating-characteristic curve, sensitivity (SE), and specificity (SP).. NNs (median AUC = 83%, median SE = 77%, and median SP = 89%) presented a statistically (value lower than 0.05) higher testing performance than those presented by LR (median AUC = 80%, median SE = 67%, and median SP = 81%) and by the Uni-G algorithm (median SE = 72% and median SP = 82%).. In conclusion, the positive results underscore the value of serial ECG comparison in ischemia detection, and NNs created by AdvRS&LP seem to be reliable tools in terms of generalization and clinical applicability.
在急性冠状动脉综合征 (ACS) 背景下的急性心肌缺血可能导致心肌梗死。因此,在院前阶段及时做出决策对于尽可能保护心脏功能至关重要。连续心电图,即将急性心电图与同一患者先前记录的(参考)心电图进行比较,通过校正个体心电图变异性来帮助识别由缺血引起的心电图变化。最近,深度学习与连续心电图的结合在检测新发心脏病方面取得了有前景的结果;因此,我们当前研究的目的是应用我们的新型高级重复结构化和学习程序 (AdvRS&LP),该程序专门用于通过使用连续心电图特征在院前阶段检测急性心肌缺血。数据属于 SUBTRACT 研究,该研究包括 1425 对心电图,194 名(14%)ACS 患者和 1035 名(73%)对照者。每对心电图都具有 28 个连续特征,这些特征与性别和年龄一起构成 AdvRS&LP 的输入,AdvRS&LP 是一种用于创建监督神经网络 (NN) 的自动构建过程。我们创建了 100 个神经网络来补偿由于有限数据集的随机数据划分而导致的统计波动。我们根据接收者操作特征曲线的曲线下面积 (AUC)、灵敏度 (SE) 和特异性 (SP),将获得的神经网络与逻辑回归 (LR) 过程和格拉斯哥程序 (Uni-G) 的性能进行了比较。NNs(中位数 AUC=83%,中位数 SE=77%,中位数 SP=89%)在测试性能方面表现出统计学上的(值低于 0.05)优势,优于 LR(中位数 AUC=80%,中位数 SE=67%,中位数 SP=81%)和 Uni-G 算法(中位数 SE=72%和中位数 SP=82%)。总之,阳性结果强调了连续心电图比较在缺血检测中的价值,AdvRS&LP 生成的神经网络在泛化和临床适用性方面似乎是可靠的工具。