Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan.
J Phys Chem B. 2023 Jul 13;127(27):5993-6005. doi: 10.1021/acs.jpcb.2c07376. Epub 2023 Jun 28.
The bacterial transcriptional factor OxyR, a peroxide sensor conserved in bacterial virulence pathways, has the capability to exhibit exceptional reactivity toward hydrogen peroxide (HO). HO is essential for oxidizing cysteine thiolates to maintain cellular redox homeostasis and is dispensable for bacterial growth that can potentially mitigate drug resistance, thus underlining OxyR as a valuable target. We employ quantum mechanics/molecular mechanics (QM/MM) umbrella sampling (US) simulations at the DFTB3/MM level of theory and propose a reaction mechanism with four potential covalent inhibitors. The potential of mean force reveals the direct role of intrinsic reactivity of inhibitors, for instance, benzothiophenes and modified experimental inhibitors with methyl oxo-enoate warhead-activated carbonyl samples in the first step of reaction, which shed light on the significance of proton transfer indispensable for full inhibition, whereas the nitrile inhibitor undergoes a stepwise mechanism with a small proton-transfer energy barrier and lower imaginary frequencies that materialize instantly after nucleophilic attack. To unveil the molecular determinants of respective binding affinities, transition states along the reaction path are optimized and characterized with B3LYP 6-31+G(d,p). Furthermore, the post-simulation analysis indicates the catalytic triad (His130/Cys199/Thr129), thermodynamically favored for inhibition, which restricts water molecules from acting as the potential source of protonation/deprotonation. This study thus serves as a preamble to add variation in the proposed structures and unveils the impact of functional groups lying in warheads that modulate the kinetics of proton transfer, which will certainly aid to design more selective and efficient irreversible inhibitors of OxyR.
细菌转录因子 OxyR 是一种在细菌毒力途径中保守的过氧化物传感器,它具有对过氧化氢(HO)表现出异常反应的能力。HO 对于氧化半胱氨酸硫醇以维持细胞氧化还原稳态是必不可少的,并且对于细菌生长是可有可无的,这可能减轻药物耐药性,因此突出了 OxyR 作为一个有价值的靶标。我们采用量子力学/分子力学(QM/MM)伞状采样(US)模拟在 DFTB3/MM 理论水平,并提出了一个具有四个潜在共价抑制剂的反应机制。平均力势揭示了抑制剂内在反应性的直接作用,例如苯并噻吩和用甲基氧代烯酸弹头激活的羰基样品的修饰实验抑制剂在反应的第一步中,这表明了对于完全抑制必不可少的质子转移的重要性,而腈抑制剂则经历了一个分步机制,质子转移能垒较小,虚频较低,在亲核攻击后立即实现。为了揭示各自结合亲和力的分子决定因素,沿反应路径优化并特征化过渡态,采用 B3LYP 6-31+G(d,p)。此外,模拟后分析表明催化三联体(His130/Cys199/Thr129)有利于抑制,这限制了水分子作为质子化/去质子化的潜在来源。因此,这项研究作为添加在提出的结构中的变化的前奏,并揭示了位于弹头中的官能团对质子转移动力学的调节作用,这肯定有助于设计更具选择性和高效的 OxyR 不可逆抑制剂。