Jo Inseong, Chung In-Young, Bae Hee-Won, Kim Jin-Sik, Song Saemee, Cho You-Hee, Ha Nam-Chul
Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; and.
Department of Pharmacy, College of Pharmacy, CHA University, Gyeonggi-do 463-400, Republic of Korea.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6443-8. doi: 10.1073/pnas.1424495112. Epub 2015 Apr 30.
OxyR, a bacterial peroxide sensor, is a LysR-type transcriptional regulator (LTTR) that regulates the transcription of defense genes in response to a low level of cellular H2O2. Consisting of an N-terminal DNA-binding domain (DBD) and a C-terminal regulatory domain (RD), OxyR senses H2O2 with conserved cysteine residues in the RD. However, the precise mechanism of OxyR is not yet known due to the absence of the full-length (FL) protein structure. Here we determined the crystal structures of the FL protein and RD of Pseudomonas aeruginosa OxyR and its C199D mutant proteins. The FL crystal structures revealed that OxyR has a tetrameric arrangement assembled via two distinct dimerization interfaces. The C199D mutant structures suggested that new interactions that are mediated by cysteine hydroxylation induce a large conformational change, facilitating intramolecular disulfide-bond formation. More importantly, a bound H2O2 molecule was found near the Cys199 site, suggesting the H2O2-driven oxidation mechanism of OxyR. Combined with the crystal structures, a modeling study suggested that a large movement of the DBD is triggered by structural changes in the regulatory domains upon oxidation. Taken together, these findings provide novel concepts for answering key questions regarding OxyR in the H2O2-sensing and oxidation-dependent regulation of antioxidant genes.
OxyR是一种细菌过氧化物传感器,是一种LysR型转录调节因子(LTTR),可响应细胞内低水平的H2O2调节防御基因的转录。OxyR由一个N端DNA结合结构域(DBD)和一个C端调节结构域(RD)组成,通过RD中保守的半胱氨酸残基感知H2O2。然而,由于缺乏全长(FL)蛋白结构,OxyR的确切机制尚不清楚。在这里,我们确定了铜绿假单胞菌OxyR及其C199D突变蛋白的FL蛋白和RD的晶体结构。FL晶体结构表明,OxyR通过两个不同的二聚化界面组装成四聚体排列。C199D突变结构表明,由半胱氨酸羟基化介导的新相互作用会诱导大的构象变化,促进分子内二硫键的形成。更重要的是,在Cys199位点附近发现了一个结合的H2O2分子,表明OxyR的H2O2驱动氧化机制。结合晶体结构,一项建模研究表明,氧化时调节结构域的结构变化会触发DBD的大幅移动。综上所述,这些发现为回答关于OxyR在H2O2传感和抗氧化基因氧化依赖性调节中的关键问题提供了新的概念。