Suppr超能文献

优化核壳结构中壳层的介电常数以提高聚合物纳米复合材料的能量密度。

Optimizing the dielectric constant of the shell layer in core-shell structures for enhanced energy density of polymer nanocomposites.

机构信息

State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.

出版信息

Phys Chem Chem Phys. 2023 Jul 12;25(27):18030-18037. doi: 10.1039/d3cp01367g.

Abstract

Improved dielectric constant and breakdown strength facilitates excellent energy storage density of polymer dielectrics, which is positive to miniaturize dielectric capacitors in electronic and electrical systems. Although coating polar substances on nanoparticles enhances the dielectric constants of polymer nanocomposites, it usually causes local electric field concentration, leading to poor breakdown strength. Here, fluoropolymers with tailorable fluorine content (PF0, PF30 and PF60) are coated on BaTiO (BT) nanoparticles to construct typical core-shell structures that are further blended with poly(vinylidenefluoride--hexafluoropropylene) (P(VDF-HFP)) to obtain BT@PF/P(VDF-HFP) nanocomposites. Uniform dispersion of nanoparticles and excellent compatibility of interfaces are observed for the samples. In addition, the dielectric constant gradually increases from 8.03 to 8.26 to 9.12 for the nanocomposites filled with 3 wt% BT@PF0, BT@PF30 and BT@PF60, respectively. However, 3 wt% BT@PF30/P(VDF-HFP) has the highest breakdown strength (455 kV mm) among the nanocomposites, which is as good as neat P(VDF-HFP). More importantly, BT@PF30 rather than BT@PF60 possesses the maximum discharged energy density (11.56 J cm at 485 kV mm), which is about 1.65 times that of neat P(VDF-HFP). This work proposes a facile experimental route to optimize the dielectric constants of the shell layer to couple the dielectric constants between the nanoparticles, shell layer and polymer matrix, which contributes to alleviating the local electric field concentration for excellent breakdown strength and electrical energy storage of polymer nanocomposites.

摘要

改进的介电常数和击穿强度有利于聚合物电介质的优异储能密度,这有利于在电子和电气系统中使介电电容器小型化。虽然在纳米颗粒上涂覆极性物质可以提高聚合物纳米复合材料的介电常数,但它通常会导致局部电场集中,从而导致击穿强度差。在这里,氟聚合物(PF0、PF30 和 PF60)具有可调节的氟含量,涂覆在 BaTiO(BT)纳米颗粒上,构建典型的核壳结构,然后与聚(偏二氟乙烯-六氟丙烯)(P(VDF-HFP))共混,得到 BT@PF/P(VDF-HFP)纳米复合材料。观察到纳米颗粒的均匀分散和界面的优异相容性。此外,填充 3wt%BT@PF0、BT@PF30 和 BT@PF60 的纳米复合材料的介电常数分别逐渐从 8.03 增加到 8.26 增加到 9.12。然而,在纳米复合材料中,3wt%BT@PF30/P(VDF-HFP)具有最高的击穿强度(455kVmm),与纯 P(VDF-HFP)相当。更重要的是,BT@PF30 而不是 BT@PF60 具有最大的放电能量密度(在 485kVmm 下为 11.56Jcm),约为纯 P(VDF-HFP)的 1.65 倍。这项工作提出了一种简便的实验途径来优化壳层的介电常数,以耦合纳米颗粒、壳层和聚合物基质之间的介电常数,有助于缓解局部电场集中,从而实现聚合物纳米复合材料的优异击穿强度和电能存储。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验