Suppr超能文献

具有内阻隔层电容器 (IBLC) 效应和高储能密度的多界面 FeO@BaTiO/P(VDF-HFP) 核壳矩阵薄膜。

Multiple Interfacial FeO@BaTiO/P(VDF-HFP) Core-Shell-Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density.

机构信息

Center of Collaboration and Innovation, Jiangxi University of Technology , Nanchang, Jiangxi 330098, P. R. China.

Institute of Huazhong University of Science and Technology , 9 Yuexingsandao, Nanshan District, Shenzhen 518000, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40792-40800. doi: 10.1021/acsami.7b10923. Epub 2017 Nov 10.

Abstract

Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, FeO@BaTiO core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (<0.05 at 1 kHz). Both high electric displacement and high electric breakdown strength were achieved in the films with 10 wt % core-shell fillers loaded. The maximum energy storage density of 7.018 J/cm was measured at 2350 kV/cm, which shows significant enhancement than those of the pure P(VDF-HFP) films and analogous composited films with converse insulating-conductive core-shell fillers. A Maxwell-Wagner capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.

摘要

由高介电常数填料和聚合物基体组成的柔性纳米复合材料在静电电容器和储能应用方面显示出巨大的潜力。为了获得具有高介电常数和高击穿强度的复合材料,采用多界面复合粒子作为填料,其由导电核和绝缘壳组成,并具有内部阻挡层电容器(IBLC)效应。因此,制备了 FeO@BaTiO 核壳粒子,并将其负载到聚偏二氟乙烯-六氟丙烯共聚物(P(VDF-HFP))聚合物基体中。随着核壳填料质量分数从 2.5wt%增加到 30wt%,薄膜的介电常数增加,而损耗角正切保持在低水平(在 1kHz 时<0.05)。在负载 10wt%核壳填料的薄膜中,实现了高的电位移和高的电击穿强度。在 2350kV/cm 下,测量到的最大能量存储密度为 7.018J/cm,与纯 P(VDF-HFP)薄膜和具有相反绝缘-导电核壳填料的类似复合薄膜相比,有显著的提高。还采用了 Maxwell-Wagner 电容器模型来解释 IBLC 效应在抑制损耗角正切和提高击穿强度方面的效率。这项工作从实验和理论上探索了一种有效的方法来制备用于储能应用的介电纳米复合材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验