Laboratorio de Neurofisiología Celular, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay.
J Gen Physiol. 2023 Sep 4;155(9). doi: 10.1085/jgp.202313353. Epub 2023 Jun 28.
Electrical synapses supported by gap junctions are known to form networks of electrically coupled neurons in many regions of the mammalian brain, where they play relevant functional roles. Yet, how electrical coupling supports sophisticated network operations and the contribution of the intrinsic electrophysiological properties of neurons to these operations remain incompletely understood. Here, a comparative analysis of electrically coupled mesencephalic trigeminal (MesV) neurons uncovered remarkable difference in the operation of these networks in highly related species. While spiking of MesV neurons might support the recruitment of coupled cells in rats, this rarely occurs in mice. Using whole-cell recordings, we determined that the higher efficacy in postsynaptic recruitment in rat's MesV neurons does not result from coupling strength of larger magnitude, but instead from the higher excitability of coupled neurons. Consistently, MesV neurons from rats present a lower rheobase, more hyperpolarized threshold, as well as a higher ability to generate repetitive discharges, in comparison to their counterparts from mice. This difference in neuronal excitability results from a significantly higher magnitude of the D-type K+ current (ID) in MesV neurons from mice, indicating that the magnitude of this current gates the recruitment of postsynaptic-coupled neurons. Since MesV neurons are primary afferents critically involved in the organization of orofacial behaviors, activation of a coupled partner could support lateral excitation, which by amplifying sensory inputs may significantly contribute to information processing and the organization of motor outputs.
已知电突触通过缝隙连接形成哺乳动物大脑许多区域中电耦合神经元的网络,它们在这些区域中发挥着相关的功能作用。然而,电耦合如何支持复杂的网络操作,以及神经元的固有电生理特性对这些操作的贡献仍不完全清楚。在这里,对电耦合的中脑三叉神经(MesV)神经元的比较分析揭示了在高度相关的物种中这些网络操作的显著差异。虽然 MesV 神经元的尖峰可能支持在大鼠中募集耦合细胞,但在小鼠中很少发生这种情况。使用全细胞记录,我们确定大鼠 MesV 神经元中在后突触募集中更高的功效不是由于更大幅度的耦合强度,而是由于耦合神经元的更高兴奋性。一致地,与来自小鼠的 MesV 神经元相比,大鼠的 MesV 神经元具有更低的阈强度、更超极化的阈强度以及更高的产生重复放电的能力。神经元兴奋性的这种差异源自于小鼠 MesV 神经元中 D 型钾电流(ID)的幅度显著增加,表明该电流的幅度门控着突触后耦合神经元的募集。由于 MesV 神经元是参与口面行为组织的主要传入神经元,激活一个耦合的伙伴可以支持侧向外展,通过放大感觉输入,这可能对信息处理和运动输出的组织有显著贡献。