文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁性氧化铁纳米颗粒对细胞和细胞外囊泡影响的最新进展

Recent progress in the effect of magnetic iron oxide nanoparticles on cells and extracellular vesicles.

作者信息

Chen Yuling, Hou Shike

机构信息

Institute of Disaster and Emergency Medicine, Tianjin University, 300072, Tianjin, China.

Key Laboratory for Disaster Medicine Technology, 300072, Tianjin, China.

出版信息

Cell Death Discov. 2023 Jun 28;9(1):195. doi: 10.1038/s41420-023-01490-2.


DOI:10.1038/s41420-023-01490-2
PMID:37380637
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10307851/
Abstract

At present, iron oxide nanoparticles (IONPs) are widely used in the biomedical field. They have unique advantages in targeted drug delivery, imaging and disease treatment. However, there are many things to pay attention to. In this paper, we reviewed the fate of IONPs in different cells and the influence on the production, separation, delivery and treatment of extracellular vesicles. It aims to provide cutting-edge knowledge related to iron oxide nanoparticles. Only by ensuring the safety and effectiveness of IONPs can their application in biomedical research and clinic be further improved.

摘要

目前,氧化铁纳米颗粒(IONPs)在生物医学领域得到广泛应用。它们在靶向药物递送、成像和疾病治疗方面具有独特优势。然而,有许多需要注意的事项。在本文中,我们综述了IONPs在不同细胞中的命运以及对细胞外囊泡的产生、分离、递送和治疗的影响。旨在提供与氧化铁纳米颗粒相关的前沿知识。只有确保IONPs的安全性和有效性,才能进一步推动其在生物医学研究和临床中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/249b/10307851/26a2c00a3d7a/41420_2023_1490_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/249b/10307851/26a2c00a3d7a/41420_2023_1490_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/249b/10307851/26a2c00a3d7a/41420_2023_1490_Fig1_HTML.jpg

相似文献

[1]
Recent progress in the effect of magnetic iron oxide nanoparticles on cells and extracellular vesicles.

Cell Death Discov. 2023-6-28

[2]
Recent trends in preparation and biomedical applications of iron oxide nanoparticles.

J Nanobiotechnology. 2024-1-8

[3]
Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications.

Nanoscale. 2020-7-23

[4]
1-2 ​T static magnetic field combined with Ferumoxytol prevent unloading-induced bone loss by regulating iron metabolism in osteoclastogenesis.

J Orthop Translat. 2022-11-3

[5]
Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy.

Nanomedicine (Lond). 2022-9

[6]
New Insights into Biocompatible Iron Oxide Nanoparticles: A Potential Booster of Gene Delivery to Stem Cells.

Small. 2020-9

[7]
Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications.

J Control Release. 2020-12-10

[8]
Surface Engineered Iron Oxide Nanoparticles Generated by Inert Gas Condensation for Biomedical Applications.

Bioengineering (Basel). 2021-3-15

[9]
Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex.

Acta Biomater. 2020-2

[10]
Iron Oxide Nanoparticles: Physicochemical Characteristics and Historical Developments to Commercialization for Potential Technological Applications.

ACS Biomater Sci Eng. 2021-12-13

引用本文的文献

[1]
Nanoparticle-Based Delivery Strategies for Combating Drug Resistance in Cancer Therapeutics.

Cancers (Basel). 2025-8-11

[2]
Engineering the future of nanomedicine: Strategic approaches to extracellular vesicle-based drug administration regimens.

World J Stem Cells. 2025-7-26

[3]
Magnetic nanoparticles influence the biological function of mesenchymal stem cells.

Sci Rep. 2025-7-30

[4]
Resolving Inflammation: The Impact of Antiretroviral Therapy on Macrophage Traffic In and Out of the CNS.

bioRxiv. 2025-5-8

[5]
Magnetic Force Microscopy of Micropatterned Clusters of Superparamagnetic Iron Oxide Nanoparticles.

ACS Appl Nano Mater. 2025-6-5

[6]
Nanomedicine Approaches for Autophagy Modulation in Cancer Therapy.

Small Sci. 2025-4-11

[7]
Enhancing spinal cord injury repair through PTCH1-mediated neural progenitor cell differentiation induced by ion elemental-optimized layered double hydroxides.

Mater Today Bio. 2025-5-29

[8]
Mechanical Forces Guide Axon Growth through the Nigrostriatal Pathway in an Organotypic Model.

Adv Sci (Weinh). 2025-8

[9]
Harnessing Extracellular Vesicles for Targeted Drug Delivery in Ovarian Cancer.

Pharmaceutics. 2025-4-17

[10]
Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications.

Nanoscale Adv. 2025-3-24

本文引用的文献

[1]
Liposomes embedded with PEGylated iron oxide nanoparticles enable ferroptosis and combination therapy in cancer.

Natl Sci Rev. 2022-8-18

[2]
Iron Oxide Nanoparticle-Incorporated Mesenchymal Stem Cells for Alzheimer's Disease Treatment.

Nano Lett. 2023-1-25

[3]
Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields.

Nanoscale Adv. 2021-11-18

[4]
p53 Promotes Ferroptosis in Macrophages Treated with FeO Nanoparticles.

ACS Appl Mater Interfaces. 2022-9-28

[5]
Exosomes derived from magnetically actuated bone mesenchymal stem cells promote tendon-bone healing through the miR-21-5p/SMAD7 pathway.

Mater Today Bio. 2022-6-11

[6]
Impact of Surface Chemistry of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles on Protein Corona Formation and Endothelial Cell Uptake, Toxicity, and Barrier Function.

Toxicol Sci. 2022-7-28

[7]
Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma - Contributions of platelet extracellular vesicles in plasma samples.

J Extracell Vesicles. 2022-5

[8]
Hedgehog-inspired immunomagnetic beads for high-efficient capture and release of exosomes.

J Mater Chem B. 2022-6-1

[9]
Extracellular Vesicle-Mediated Delivery of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles to Mice Brain.

Front Pharmacol. 2022-4-7

[10]
Effects of Magnetite Nanoparticles and Static Magnetic Field on Neural Differentiation of Pluripotent Stem Cells.

Stem Cell Rev Rep. 2022-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索