Department of Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, Cambridgeshire, UK.
Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada.
Behav Res Methods. 2024 Mar;56(3):1863-1899. doi: 10.3758/s13428-023-02124-2. Epub 2023 Jun 29.
Interest in the psychology of misinformation has exploded in recent years. Despite ample research, to date there is no validated framework to measure misinformation susceptibility. Therefore, we introduce Verification done, a nuanced interpretation schema and assessment tool that simultaneously considers Veracity discernment, and its distinct, measurable abilities (real/fake news detection), and biases (distrust/naïvité-negative/positive judgment bias). We then conduct three studies with seven independent samples (N = 8504) to show how to develop, validate, and apply the Misinformation Susceptibility Test (MIST). In Study 1 (N = 409) we use a neural network language model to generate items, and use three psychometric methods-factor analysis, item response theory, and exploratory graph analysis-to create the MIST-20 (20 items; completion time < 2 minutes), the MIST-16 (16 items; < 2 minutes), and the MIST-8 (8 items; < 1 minute). In Study 2 (N = 7674) we confirm the internal and predictive validity of the MIST in five national quota samples (US, UK), across 2 years, from three different sampling platforms-Respondi, CloudResearch, and Prolific. We also explore the MIST's nomological net and generate age-, region-, and country-specific norm tables. In Study 3 (N = 421) we demonstrate how the MIST-in conjunction with Verification done-can provide novel insights on existing psychological interventions, thereby advancing theory development. Finally, we outline the versatile implementations of the MIST as a screening tool, covariate, and intervention evaluation framework. As all methods are transparently reported and detailed, this work will allow other researchers to create similar scales or adapt them for any population of interest.
近年来,人们对错误信息心理学的兴趣大增。尽管研究成果颇丰,但截至目前,仍缺乏有效的框架来衡量错误信息易感性。因此,我们引入了“Verification done”,这是一种细致入微的解释模式和评估工具,它同时考虑了准确性识别,以及其独特的、可衡量的能力(真假新闻检测)和偏差(不信任/天真——负面/正面判断偏差)。然后,我们进行了三项研究,涉及七个独立样本(N=8504),以展示如何开发、验证和应用错误信息易感性测试(MIST)。在研究 1(N=409)中,我们使用神经网络语言模型生成项目,并使用三种心理测量方法——因素分析、项目反应理论和探索性图分析——创建 MIST-20(20 个项目;完成时间<2 分钟)、MIST-16(16 个项目;<2 分钟)和 MIST-8(8 个项目;<1 分钟)。在研究 2(N=7674)中,我们在两年内,从三个不同的采样平台——Respondi、CloudResearch 和 Prolific,在五个国家配额样本(美国、英国)中,确认了 MIST 的内部和预测有效性。我们还探讨了 MIST 的关联网络,并生成了年龄、地区和国家特定的规范表。在研究 3(N=421)中,我们展示了 MIST——与 Verification done 结合使用——如何为现有的心理干预措施提供新的见解,从而推进理论发展。最后,我们概述了 MIST 作为一种筛选工具、协变量和干预评估框架的多种实现方式。由于所有方法都透明地报告并详细说明,因此这项工作将允许其他研究人员创建类似的量表或针对任何感兴趣的人群进行改编。