Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America.
PLoS Comput Biol. 2023 Jun 29;19(6):e1011003. doi: 10.1371/journal.pcbi.1011003. eCollection 2023 Jun.
How perception of sensory stimuli emerges from brain activity is a fundamental question of neuroscience. To date, two disparate lines of research have examined this question. On one hand, human neuroimaging studies have helped us understand the large-scale brain dynamics of perception. On the other hand, work in animal models (mice, typically) has led to fundamental insight into the micro-scale neural circuits underlying perception. However, translating such fundamental insight from animal models to humans has been challenging. Here, using biophysical modeling, we show that the auditory awareness negativity (AAN), an evoked response associated with perception of target sounds in noise, can be accounted for by synaptic input to the supragranular layers of auditory cortex (AC) that is present when target sounds are heard but absent when they are missed. This additional input likely arises from cortico-cortical feedback and/or non-lemniscal thalamic projections and targets the apical dendrites of layer-5 (L5) pyramidal neurons. In turn, this leads to increased local field potential activity, increased spiking activity in L5 pyramidal neurons, and the AAN. The results are consistent with current cellular models of conscious processing and help bridge the gap between the macro and micro levels of perception-related brain activity.
感觉刺激的感知如何从大脑活动中产生,是神经科学的一个基本问题。迄今为止,有两条截然不同的研究路线探讨了这个问题。一方面,人类神经影像学研究帮助我们了解了感知的大规模大脑动力学。另一方面,动物模型(通常是老鼠)的工作使我们对感知所基于的微观尺度神经回路有了基本的了解。然而,将这种从动物模型中获得的基本认识转化到人类身上一直具有挑战性。在这里,我们使用生物物理建模表明,听觉意识负波(AAN)是一种与在噪声中感知目标声音相关的诱发电位,可以用目标声音被听到时存在但错过时不存在的对听觉皮层(AC)的超颗粒层的突触输入来解释。这种额外的输入可能来自皮质-皮质反馈和/或非薄束丘脑投射,并以 L5 锥体神经元的树突顶端为目标。反过来,这会导致局部场电位活动增加、L5 锥体神经元的尖峰活动增加以及 AAN。研究结果与意识处理的当前细胞模型一致,并有助于弥合与感知相关的大脑活动的宏观和微观水平之间的差距。