Suppr超能文献

小鼠听觉皮层中对比增益控制的神经调节机制。

Neuromodulatory Mechanisms Underlying Contrast Gain Control in Mouse Auditory Cortex.

机构信息

Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.

出版信息

J Neurosci. 2022 Jul 13;42(28):5564-5579. doi: 10.1523/JNEUROSCI.2054-21.2022. Epub 2022 Jun 3.

Abstract

Neural adaptation enables the brain to efficiently process sensory signals despite large changes in background noise. Previous studies have established that recent background spectro- or spatio-temporal statistics scale neural responses to sensory stimuli via a canonical normalization computation, which is conserved among species and sensory domains. In the auditory pathway, one major form of normalization, termed contrast gain control, presents as decreasing instantaneous firing-rate gain, the slope of the neural input-output relationship, with increasing variability of background sound levels (contrast) across time and frequency. Despite this gain rescaling, mean firing-rates in auditory cortex become invariant to sound level contrast, termed contrast invariance. The underlying neuromodulatory mechanisms of these two phenomena remain unknown. To study these mechanisms in male and female mice, we used a 2-photon calcium imaging preparation in layer 2/3 neurons of primary auditory cortex (A1), along with pharmacological and genetic KO approaches. We found that neuromodulatory cortical synaptic zinc signaling is necessary for contrast gain control but not contrast invariance in mouse A1. When sound levels in the acoustic environment become more variable across time and frequency, the brain decreases response gain to maintain dynamic range and thus stimulus discriminability. This gain adaptation accounts for changes in perceptual judgments in humans and mice; however, the underlying neuromodulatory mechanisms remain poorly understood. Here, we report context-dependent neuromodulatory effects of synaptic zinc that are necessary for contrast gain control in A1. Understanding context-specific neuromodulatory mechanisms, such as contrast gain control, provides insight into A1 cortical mechanisms of adaptation and also into fundamental aspects of perceptual changes that rely on gain modulation, such as attention.

摘要

神经适应使大脑能够在背景噪声发生很大变化的情况下有效地处理感觉信号。以前的研究已经确定,最近的背景频谱或时空统计信息通过规范的归一化计算来调节神经对感觉刺激的反应,这种计算在物种和感觉领域中是保守的。在听觉通路中,一种主要的归一化形式,称为对比增益控制,表现为随着背景声音水平(对比度)随时间和频率的变化而增加,瞬时放电率增益(即神经输入-输出关系的斜率)减小。尽管有这种增益调整,但听觉皮层中的平均放电率对声音水平的对比度保持不变,称为对比度不变性。这两种现象的潜在神经调制机制尚不清楚。为了在雄性和雌性小鼠中研究这些机制,我们使用了双光子钙成像技术在初级听觉皮层(A1)的第 2/3 层神经元中进行,同时使用了药理学和基因 KO 方法。我们发现,皮层突触锌信号的神经调制对于小鼠 A1 中的对比增益控制是必要的,但对于对比不变性则不是。当环境中的声音水平在时间和频率上变得更加多变时,大脑会降低响应增益以保持动态范围,从而提高刺激可辨别性。这种增益适应解释了人类和小鼠感知判断的变化;然而,潜在的神经调制机制仍知之甚少。在这里,我们报告了突触锌的上下文相关神经调制效应,这种效应对于 A1 中的对比增益控制是必要的。了解特定于上下文的神经调制机制,如对比增益控制,为 A1 皮层的适应机制以及依赖于增益调制的感知变化的基本方面提供了深入的了解,例如注意力。

相似文献

4
Streaming of Repeated Noise in Primary and Secondary Fields of Auditory Cortex.听觉皮层初级和次级场中重复噪声的传播。
J Neurosci. 2020 May 6;40(19):3783-3798. doi: 10.1523/JNEUROSCI.2105-19.2020. Epub 2020 Apr 9.
6
Contrast gain control in mouse auditory cortex.小鼠听觉皮层中的对比度增益控制。
J Neurophysiol. 2018 Oct 1;120(4):1872-1884. doi: 10.1152/jn.00847.2017. Epub 2018 Jul 25.

引用本文的文献

1
5
On the genesis and unique functions of zinc neuromodulation.论锌神经调节的起源及独特功能。
J Neurophysiol. 2024 Oct 1;132(4):1241-1254. doi: 10.1152/jn.00285.2024. Epub 2024 Aug 28.

本文引用的文献

1
Listening in complex acoustic scenes.在复杂声学场景中聆听。
Curr Opin Physiol. 2020 Dec;18:63-72. doi: 10.1016/j.cophys.2020.09.001. Epub 2020 Sep 8.
2
The Function and Regulation of Zinc in the Brain.锌在大脑中的功能和调节。
Neuroscience. 2021 Mar 1;457:235-258. doi: 10.1016/j.neuroscience.2021.01.010. Epub 2021 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验