Suppr超能文献

基于 2018 年至 2022 年护理 MOOC 数据的回顾性研究:通过潜在类别分析对 MOOC 学习者的参与和表现进行分析。

Analysis of participation and performance of MOOC learners via latent class analysis: A retrospective study based on the data of a nursing MOOC from 2018 to 2022.

机构信息

School of Nursing, Sun Yat-sen University, Guangzhou, China.

The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

出版信息

Nurse Educ Today. 2023 Sep;128:105888. doi: 10.1016/j.nedt.2023.105888. Epub 2023 Jun 21.

Abstract

BACKGROUND

Although massive open online courses have been widely used in nurse education, few studies have evaluated MOOC learner behavioral characteristics. Understanding MOOC learners' participation and performance parameters is helpful for further development and administration of this educational approach.

OBJECTIVES

To categorize nursing MOOC learners according to their different learning participation and to compare the differences in learning performance of different types of MOOC learners.

DESIGN

Retrospective.

SETTINGS AND PARTICIPANTS

Participants evaluated in this study were learners of the Health Assessment MOOC on a Chinese MOOC platform for nine semesters from 2018 to 2022.

METHODS

Via latent class analysis, MOOC learners were categorized according to the number of times they participated in each topic test and the final exam. Differences in scores of each topic test and the final exam, case discussion number, and total evaluation score among different learners were compared.

RESULTS

Using latent class analysis, MOOC learners were categorized as committed (28.96 %), negative (16.08 %), mid-term dropout (12.78 %) and early dropout (42.18 %) learners. Committed learners performed best and no significant difference were found among other learner types on most topic tests and the final exam. Committed learners participated in case discussions most actively. According to total evaluations, committed, mid-term dropout, early dropout, and negative learners performed from best to worst.

CONCLUSION

Health Assessment MOOC learners were categorized using five-years of data. Committed learners performed best. No significant difference in performance was found for other learners on most topic tests and the final exam. Understanding learner characteristics and educational behavior is critical for effective design and administration of future MOOC learning approaches.

摘要

背景

尽管大规模在线开放课程已广泛应用于护理教育,但鲜有研究评估 MOOC 学习者的行为特征。了解 MOOC 学习者的参与度和表现参数有助于进一步发展和管理这种教育方法。

目的

根据不同的学习参与度对护理 MOOC 学习者进行分类,并比较不同类型 MOOC 学习者的学习表现差异。

设计

回顾性研究。

设置和参与者

本研究评估的参与者是 2018 年至 2022 年九个学期在一个中国 MOOC 平台上学习健康评估 MOOC 的学习者。

方法

通过潜在类别分析,根据学习者参与每个主题测验和期末考试的次数对 MOOC 学习者进行分类。比较不同学习者在每次主题测验和期末考试中的得分、案例讨论次数和总评分数的差异。

结果

使用潜在类别分析,MOOC 学习者分为四类:投入型(28.96%)、消极型(16.08%)、中期辍学型(12.78%)和早期辍学型(42.18%)。投入型学习者表现最佳,其他类型学习者在大多数主题测验和期末考试中的表现无显著差异。投入型学习者最积极地参与案例讨论。根据总评分数,投入型、中期辍学型、早期辍学型和消极型学习者的表现从好到差。

结论

利用五年的数据对健康评估 MOOC 学习者进行分类。投入型学习者表现最佳。其他类型学习者在大多数主题测验和期末考试中的表现无显著差异。了解学习者的特征和教育行为对于未来 MOOC 学习方法的有效设计和管理至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验