AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar.
Department of Computer Science and Engineering, Qatar University, Qatar.
Stud Health Technol Inform. 2023 Jun 29;305:283-286. doi: 10.3233/SHTI230484.
In 2019 alone, Diabetes Mellitus impacted 463 million individuals worldwide. Blood glucose levels (BGL) are often monitored via invasive techniques as part of routine protocols. Recently, AI-based approaches have shown the ability to predict BGL using data acquired by non-invasive Wearable Devices (WDs), therefore improving diabetes monitoring and treatment. It is crucial to study the relationships between non-invasive WD features and markers of glycemic health. Therefore, this study aimed to investigate accuracy of linear and non-linear models in estimating BGL. A dataset containing digital metrics as well as diabetic status collected using traditional means was used. Data consisted of 13 participants data collected from WDs, these participants were divided in two groups young, and Adult Our experimental design included Data Collection, Feature Engineering, ML model selection/development, and reporting evaluation of metrics. The study showed that linear and non-linear models both have high accuracy in estimating BGL using WD data (RMSE range: 0.181 to 0.271, MAE range: 0.093 to 0.142). We provide further evidence of the feasibility of using commercially available WDs for the purpose of BGL estimation amongst diabetics when using Machine learning approaches.
仅在 2019 年,全球就有 4.63 亿人受到糖尿病的影响。血糖水平(BGL)通常通过侵入性技术进行监测,作为常规方案的一部分。最近,基于人工智能的方法已经显示出使用非侵入性可穿戴设备(WDs)获取的数据预测 BGL 的能力,从而改善糖尿病的监测和治疗。研究非侵入性 WD 特征与血糖健康标志物之间的关系至关重要。因此,本研究旨在探讨线性和非线性模型在估计 BGL 方面的准确性。该研究使用了包含数字指标以及使用传统方法收集的糖尿病状态的数据集。数据包括 13 名参与者使用 WDs 收集的数据,这些参与者分为年轻组和成年组。我们的实验设计包括数据收集、特征工程、机器学习模型选择/开发以及报告评估指标。研究表明,线性和非线性模型都可以使用 WD 数据(RMSE 范围:0.181 至 0.271,MAE 范围:0.093 至 0.142)来高度准确地估计 BGL。我们进一步证明了在使用机器学习方法时,使用商业上可用的 WDs 来估计糖尿病患者的 BGL 是可行的。