Suppr超能文献

评估一种连续血糖监测仪:一种新型无创穿戴式设备,采用生物阻抗技术。

Evaluation of a Continuous Blood Glucose Monitor: A Novel and Non-Invasive Wearable Using Bioimpedance Technology.

机构信息

Scimita Ventures Pty Ltd, Sydney, NSW, Australia.

Canterbury Hospital, Sydney, NSW, Australia.

出版信息

J Diabetes Sci Technol. 2023 Mar;17(2):336-344. doi: 10.1177/19322968211054110. Epub 2021 Oct 29.

Abstract

BACKGROUND

Frequent blood glucose level (BGL) monitoring is essential for effective diabetes management. Poor compliance is common due to the painful finger pricking or subcutaneous lancet implantation required from existing technologies. There are currently no commercially available non-invasive devices that can effectively measure BGL. In this real-world study, a prototype non-invasive continuous glucose monitoring system (NI-CGM) developed as a wearable ring was used to collect bioimpedance data. The aim was to develop a mathematical model that could use these bioimpedance data to estimate BGL in real time.

METHODS

The prototype NI-CGM was worn by 14 adult participants with type 2 diabetes for 14 days in an observational clinical study. Bioimpedance data were collected alongside paired BGL measurements taken with a Food and Drug Administration (FDA)-approved self-monitoring blood glucose (SMBG) meter and an FDA-approved CGM. The SMBG meter data were used to improve CGM accuracy, and CGM data to develop the mathematical model.

RESULTS

A gradient boosted model was developed using a randomized 80-20 training-test split of data. The estimated BGL from the model had a Mean Absolute Relative Difference (MARD) of 17.9%, with the Parkes error grid (PEG) analysis showing 99% of values in clinically acceptable zones A and B.

CONCLUSIONS

This study demonstrated the reliability of the prototype NI-CGM at collecting bioimpedance data in a real-world scenario. These data were used to train a model that could successfully estimate BGL with a promising MARD and clinically relevant PEG result. These results will enable continued development of the prototype NI-CGM as a wearable ring.

摘要

背景

频繁的血糖水平(BGL)监测对于有效的糖尿病管理至关重要。由于现有技术需要进行痛苦的手指刺破或皮下采血针植入,因此患者的依从性通常较差。目前尚无可有效测量 BGL 的商业上可用的非侵入性设备。在这项真实世界的研究中,使用一种可穿戴式指环原型开发了一种非侵入式连续血糖监测系统(NI-CGM)来收集生物阻抗数据。目的是开发一种数学模型,该模型可以使用这些生物阻抗数据实时估计 BGL。

方法

14 名 2 型糖尿病成年参与者在一项观察性临床研究中佩戴原型 NI-CGM 长达 14 天。同时收集生物阻抗数据以及使用经食品和药物管理局(FDA)批准的自我监测血糖(SMBG)计和经 FDA 批准的 CGM 进行的配对 BGL 测量值。SMBG 计数据用于提高 CGM 准确性,CGM 数据用于开发数学模型。

结果

使用经过随机 80-20 训练-测试数据分割的梯度提升模型进行开发。模型估计的 BGL 的平均绝对相对差异(MARD)为 17.9%,Parkes 误差网格(PEG)分析显示 99%的数值在临床可接受的 A 和 B 区。

结论

这项研究证明了原型 NI-CGM 在真实场景中收集生物阻抗数据的可靠性。这些数据被用于训练模型,该模型可以成功地以有希望的 MARD 和具有临床意义的 PEG 结果来估计 BGL。这些结果将使原型 NI-CGM 作为可穿戴指环继续开发。

相似文献

引用本文的文献

2
Prototype analysis of a low-power, small-scale wearable medical device.低功耗、小规模可穿戴医疗设备的原型分析
J Electr Bioimpedance. 2025 Jan 4;15(1):169-176. doi: 10.2478/joeb-2024-0020. eCollection 2024 Jan.
4
Electrical bioimpedance in the era of artificial intelligence.人工智能时代的生物电阻抗
J Electr Bioimpedance. 2024 Jan 26;15(1):1-3. doi: 10.2478/joeb-2024-0001. eCollection 2024 Jan.

本文引用的文献

4
Abridged for Primary Care Providers.为初级保健提供者缩写。
Clin Diabetes. 2020 Jan;38(1):10-38. doi: 10.2337/cd20-as01.
10
Kalman Smoothing for Objective and Automatic Preprocessing of Glucose Data.卡尔曼滤波在血糖数据客观自动预处理中的应用。
IEEE J Biomed Health Inform. 2019 Jan;23(1):218-226. doi: 10.1109/JBHI.2018.2811706. Epub 2018 Mar 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验