Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269-4155, United States.
Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3003, United States.
Bioinformatics. 2023 Jun 30;39(39 Suppl 1):i242-i251. doi: 10.1093/bioinformatics/btad220.
Non-canonical (or non-B) DNA are genomic regions whose three-dimensional conformation deviates from the canonical double helix. Non-B DNA play an important role in basic cellular processes and are associated with genomic instability, gene regulation, and oncogenesis. Experimental methods are low-throughput and can detect only a limited set of non-B DNA structures, while computational methods rely on non-B DNA base motifs, which are necessary but not sufficient indicators of non-B structures. Oxford Nanopore sequencing is an efficient and low-cost platform, but it is currently unknown whether nanopore reads can be used for identifying non-B structures.
We build the first computational pipeline to predict non-B DNA structures from nanopore sequencing. We formalize non-B detection as a novelty detection problem and develop the GoFAE-DND, an autoencoder that uses goodness-of-fit (GoF) tests as a regularizer. A discriminative loss encourages non-B DNA to be poorly reconstructed and optimizing Gaussian GoF tests allows for the computation of P-values that indicate non-B structures. Based on whole genome nanopore sequencing of NA12878, we show that there exist significant differences between the timing of DNA translocation for non-B DNA bases compared with B-DNA. We demonstrate the efficacy of our approach through comparisons with novelty detection methods using experimental data and data synthesized from a new translocation time simulator. Experimental validations suggest that reliable detection of non-B DNA from nanopore sequencing is achievable.
Source code is available at https://github.com/bayesomicslab/ONT-nonb-GoFAE-DND.
非规范(或非 B)DNA 是三维构象偏离规范双螺旋的基因组区域。非 B DNA 在基本细胞过程中发挥重要作用,并与基因组不稳定性、基因调控和致癌作用有关。实验方法的通量低,只能检测到有限数量的非 B DNA 结构,而计算方法依赖于非 B DNA 碱基基序,这是非 B 结构的必要但非充分指标。牛津纳米孔测序是一种高效且低成本的平台,但目前尚不清楚纳米孔读数是否可用于识别非 B 结构。
我们构建了第一个从纳米孔测序中预测非 B DNA 结构的计算管道。我们将非 B 检测形式化为新颖性检测问题,并开发了 GoFAE-DND,这是一种自动编码器,它使用拟合优度 (GoF) 测试作为正则化器。一种有区别的损失鼓励非 B DNA 被重建得很差,而优化高斯 GoF 测试则允许计算表示非 B 结构的 P 值。基于 NA12878 的全基因组纳米孔测序,我们表明非 B DNA 碱基的 DNA 易位时间与 B-DNA 相比存在显著差异。我们通过与使用实验数据和从新的易位时间模拟器合成的数据的新颖性检测方法进行比较,展示了我们方法的有效性。实验验证表明,从纳米孔测序中可靠地检测非 B DNA 是可行的。
源代码可在 https://github.com/bayesomicslab/ONT-nonb-GoFAE-DND 上获得。