Behan James A, Xie Zengchun, Wang Yi-Feng, Yang Xiaoliang, Aastrup Teodor, Yan Yan, Adumeau Laurent, Dawson Kenneth A
Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
Attana AB, Greta Arwidssons Väg 21, Stockholm SE-11419, Sweden.
JACS Au. 2023 May 12;3(6):1623-1633. doi: 10.1021/jacsau.3c00084. eCollection 2023 Jun 26.
Conjugation of biomolecules on the surface of nanoparticles (NPs) to achieve active targeting is widely investigated within the scientific community. However, while a basic framework of the physicochemical processes underpinning bionanoparticle recognition is now emerging, the precise evaluation of the interactions between engineered NPs and biological targets remains underdeveloped. Here, we show how the adaptation of a method currently used to evaluate molecular ligand-receptor interactions by quartz crystal microbalance (QCM) can be used to obtain concrete insights into interactions between different NP architectures and assemblies of receptors. Using a model bionanoparticle grafted with oriented apolipoprotein E (ApoE) fragments, we examine key aspects of bionanoparticle engineering for effective interactions with target receptors. We show that the QCM technique can be used to rapidly measure construct-receptor interactions across biologically relevant exchange times. We contrast random adsorption of the ligand at the surface of the NPs, resulting in no measurable interaction with target receptors, to grafted oriented constructs, which are strongly recognized even at lower graft densities. The effects of other basic parameters impacting the interaction such as ligand graft density, receptor immobilization density, and linker length were also efficiently evaluated with this technique. Dramatic changes in interaction outcomes with subtle alterations in these parameters highlight the general importance of measuring the interactions between engineered NPs and target receptors ex situ early on in the construct development process for the rational design of bionanoparticles.
在纳米颗粒(NPs)表面进行生物分子共轭以实现主动靶向,这一研究在科学界得到了广泛关注。然而,尽管支撑生物纳米颗粒识别的物理化学过程的基本框架正在逐渐形成,但对工程化纳米颗粒与生物靶点之间相互作用的精确评估仍有待完善。在此,我们展示了如何通过调整目前用于通过石英晶体微天平(QCM)评估分子配体 - 受体相互作用的方法,来深入了解不同纳米颗粒结构与受体组装体之间的相互作用。我们使用接枝了定向载脂蛋白E(ApoE)片段的模型生物纳米颗粒,研究生物纳米颗粒工程中与靶受体有效相互作用的关键方面。我们表明,QCM技术可用于在生物学相关的交换时间内快速测量构建体 - 受体相互作用。我们将纳米颗粒表面配体的随机吸附(导致与靶受体无可测量的相互作用)与接枝的定向构建体进行对比,即使在较低的接枝密度下,接枝的定向构建体也能被强烈识别。利用该技术还能有效评估影响相互作用的其他基本参数,如配体接枝密度、受体固定密度和连接子长度。这些参数的细微变化会导致相互作用结果发生显著变化,这凸显了在构建体开发过程早期对工程化纳米颗粒与靶受体之间的相互作用进行非原位测量对于生物纳米颗粒合理设计的普遍重要性。