CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University , Qingdao, China.
mBio. 2023 Aug 31;14(4):e0094223. doi: 10.1128/mbio.00942-23. Epub 2023 Jun 30.
Forkhead-associated (FHA) domain proteins specifically recognize phosphorylated threonine via the FHA domain and are involved in signal transduction in various processes especially DNA damage response (DDR) and cell cycle regulation in eukaryotes. Although FHA domain proteins are found in prokaryotes, archaea, and bacteria, their functions are far less clear as compared to the eukaryotic counterparts, and it has not been studied whether archaeal FHA proteins play a role in DDR. Here, we have characterized an FHA protein from the hyperthermophilic Crenarchaeon (SisArnA) by genetic, biochemical, and transcriptomic approaches. We find that Δ exhibits higher resistance to DNA damage agent 4-nitroquinoline 1-oxide (NQO). The transcription of genes, encoding the proteins for pili-mediated cell aggregation and cell survival after DDR, is elevated in Δ. The interactions of SisArnA with two predicted partners, SisvWA1 (SisArnB) and SisvWA2 (designated as SisArnE), were enhanced by phosphorylation . Δ displays higher resistance to NQO than the wild type. In addition, the interaction between SisArnA and SisArnB, which is reduced in the NQO-treated cells, is indispensable for DNA binding . These indicate that SisArnA and SisArnB work together to inhibit the expression of genes . Interestingly, Δ is more sensitive to NQO than the wild type, and the interaction between SisArnA and SisArnE is strengthened after NQO treatment, suggesting a positive role of SisArnE in DDR. Finally, transcriptomic analysis reveals that SisArnA represses a number of genes, implying that archaea apply the FHA/phospho-peptide recognition module for extensive transcriptional regulation. IMPORTANCE Cellular adaption to diverse environmental stresses requires a signal sensor and transducer for cell survival. Protein phosphorylation and its recognition by forkhead-associated (FHA) domain proteins are widely used for signal transduction in eukaryotes. Although FHA proteins exist in archaea and bacteria, investigation of their functions, especially those in DNA damage response (DDR), is limited. Therefore, the evolution and functional conservation of FHA proteins in the three domains of life is still a mystery. Here, we find that an FHA protein from the hyperthermophilic Crenarchaeon (SisArnA) represses the transcription of pili genes together with its phosphorylated partner SisArnB. SisArnA derepression facilitates DNA exchange and repair in the presence of DNA damage. The fact that more genes including a dozen of those involved in DDR are found to be regulated by SisArnA implies that the FHA/phosphorylation module may serve as an important signal transduction pathway for transcriptional regulation in archaeal DDR.
FHA 结构域蛋白通过 FHA 结构域特异性识别磷酸化苏氨酸,并参与各种过程(尤其是真核生物的 DNA 损伤反应 (DDR) 和细胞周期调控)中的信号转导。虽然 FHA 结构域蛋白存在于原核生物、古菌和细菌中,但与真核生物相比,它们的功能远不明确,并且尚未研究古菌 FHA 蛋白是否在 DDR 中发挥作用。在这里,我们通过遗传、生化和转录组学方法对来自嗜热古菌的 FHA 结构域蛋白进行了表征。我们发现,与野生型相比,Δ 对 DNA 损伤剂 4-硝基喹啉 1-氧化物 (NQO) 的抗性更高。编码与纤毛介导的细胞聚集和 DDR 后细胞存活相关的蛋白质的 基因的转录在 Δ 中升高。磷酸化增强了 SisArnA 与两个预测的伙伴,SisvWA1(SisArnB)和 SisvWA2(指定为 SisArnE)之间的相互作用。与野生型相比,Δ 对 NQO 的抗性更高。此外,在 NQO 处理的细胞中减少的 SisArnA 与 SisArnB 之间的相互作用对于 DNA 结合是必不可少的。这表明 SisArnA 和 SisArnB 共同作用以抑制 基因的表达。有趣的是,与野生型相比,Δ 对 NQO 更为敏感,并且在 NQO 处理后 SisArnA 与 SisArnE 之间的相互作用增强,表明 SisArnE 在 DDR 中起积极作用。最后,转录组分析表明 SisArnA 抑制了许多基因的表达,这表明古菌将 FHA/磷酸肽识别模块用于广泛的转录调控。重要性 细胞适应多种环境压力需要信号传感器和转导器以维持细胞存活。蛋白质磷酸化及其被 forkhead-associated (FHA) 结构域蛋白识别是真核生物中信号转导的广泛方法。尽管 FHA 蛋白存在于古菌和细菌中,但对其功能的研究,特别是在 DNA 损伤反应 (DDR) 中的功能,是有限的。因此,FHA 蛋白在生命的三个领域中的进化和功能保守性仍然是一个谜。在这里,我们发现来自嗜热古菌的 FHA 结构域蛋白 SisArnA 与磷酸化的伙伴 SisArnB 一起抑制纤毛基因的转录。在存在 DNA 损伤的情况下,SisArnA 的去抑制促进了 DNA 的交换和修复。发现包括十几个参与 DDR 的基因在内的更多基因受到 SisArnA 的调节,这表明 FHA/磷酸化模块可能是古菌 DDR 中转录调控的重要信号转导途径。