Suppr超能文献

干燥载粒液滴的三维沉积物。

Three-Dimensional Deposits from Drying Particle-Laden Drops.

机构信息

Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States.

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.

出版信息

Langmuir. 2023 Jul 18;39(28):9773-9784. doi: 10.1021/acs.langmuir.3c00831. Epub 2023 Jun 30.

Abstract

Formation of inhomogeneous (in the form of a "coffee ring") or homogeneous deposits accompanies the drying of a particle-laden drop. Invariably, this deposition occurs in a two-dimensional (2D) space (, plane) (and might have a finite thickness in ), where the evaporating drop is positioned. Here, we show an interesting extension of this problem: we demonstrate the occurrence of evaporation-mediated particle deposits that span three dimensions (, , and ). The extent of the span in this 3rd dimension () is comparable to the span in and and hence is much larger than the finite thickness (in ) of the 2D deposits. Particle-laden drops are introduced in an uncured and heavier (than the drop) polydimethysiloxane (PDMS) film, enabling the drop to come to the uncured PDMS surface and breach it and get partly exposed to the surrounding air enforcing the onset of evaporation. The subsequent curing of the drop-laden PDMS film ensures that the drop is occupying a three-dimensional (3D) cavity; as a consequence, the evaporation-driven flow field, depending on the particle sizes, leads to a deposition pattern that spans three dimensions. We consider particles of three different sizes: coffee particles (20-50 μm), silver nanoparticles (∼20 nm), and carbon nanotubes (CNTs) (1-2 μm). The coffee particles form a ring-like deposit in the , plane, while the much smaller silver nanoparticles (NPs) and CNTs form a 3D deposit that spans in , , and directions. We anticipate that the present finding of the evaporation-triggered three-dimensional (3D) particle deposits will enable unprecedented self-assembly-driven fabrication of various materials, structures, and functional devices as well as patterning and coating in 3D spaces.

摘要

颗粒负载液滴干燥时会形成不均匀(呈“咖啡环”状)或均匀的沉积物。通常,这种沉积发生在蒸发液滴所在的二维(2D)空间(,平面)(在 方向上可能具有有限的厚度)。在这里,我们展示了这个问题的一个有趣扩展:我们展示了跨越三个维度(,和)的蒸发介导颗粒沉积的发生。在第三个维度()中的跨度范围与和中的跨度范围相当,因此比二维(2D)沉积物的有限厚度(在 方向上)大得多。将负载颗粒的液滴引入未固化且较重(比液滴重)的聚二甲基硅氧烷(PDMS)膜中,使液滴能够到达未固化的 PDMS 表面并突破它,并部分暴露于周围空气,强制蒸发开始。随后对负载液滴的 PDMS 膜进行固化,以确保液滴占据三维(3D)腔体;因此,根据颗粒大小,蒸发驱动的流场会导致跨越三个维度的沉积模式。我们考虑了三种不同尺寸的颗粒:咖啡颗粒(20-50μm)、银纳米颗粒(约 20nm)和碳纳米管(CNTs)(1-2μm)。咖啡颗粒在 , 平面上形成环状沉积物,而小得多的银纳米颗粒(NPs)和 CNT 则形成跨越 , ,和 方向的 3D 沉积物。我们预计,目前发现的蒸发触发的三维(3D)颗粒沉积物将能够实现前所未有的自组装驱动制造各种材料、结构和功能器件以及在 3D 空间中的图案化和涂层。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验