Opt Lett. 2023 Jul 1;48(13):3415-3418. doi: 10.1364/OL.493717.
The cutting-edge imaging system exhibits low output resolution and high power consumption, presenting challenges for the RGB-D fusion algorithm. In practical scenarios, aligning the depth map resolution with the RGB image sensor is a crucial requirement. In this Letter, the software and hardware co-design is considered to implement a lidar system based on the monocular RGB 3D imaging algorithm. A 6.4 × 6.4-mm deep-learning accelerator (DLA) system-on-chip (SoC) manufactured in a 40-nm CMOS is incorporated with a 3.6-mm TX-RX integrated chip fabricated in a 180-nm CMOS to employ the customized single-pixel imaging neural network. In comparison to the RGB-only monocular depth estimation technique, the root mean square error is reduced from 0.48 m to 0.3 m on the evaluated dataset, and the output depth map resolution matches the RGB input.
该尖端成像系统的输出分辨率低,功耗高,这给 RGB-D 融合算法带来了挑战。在实际场景中,需要将深度图分辨率与 RGB 图像传感器对齐。在本信中,考虑进行软件和硬件协同设计,以实现基于单目 RGB 3D 成像算法的激光雷达系统。该系统采用了一款在 40nm CMOS 上制造的 6.4mm×6.4mm 的深度学习加速器(DLA)片上系统(SoC),并结合了一款在 180nm CMOS 上制造的 3.6mm TX-RX 集成芯片,以使用定制的单像素成像神经网络。与仅使用 RGB 的单目深度估计技术相比,在评估数据集上,均方根误差从 0.48m 降低到 0.3m,并且输出深度图分辨率与 RGB 输入匹配。