Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
Talanta. 2023 Dec 1;265:124873. doi: 10.1016/j.talanta.2023.124873. Epub 2023 Jun 22.
This work integrated a lab-made conductive graphite/polylactic acid (Grp/PLA, 40:60% w/w) filament into a 3D pen to print customized electrodes (cylindrical design). Thermogravimetric analysis validated the incorporation of graphite into the PLA matrix, while Raman spectroscopy and scanning electron microscopy images indicated a graphitic structure with the presence of defects and highly porous, respectively. The electrochemical features of the 3D-printed Gpt/PLA electrode were systematically compared to that achieved using commercial carbon black/polylactic acid (CB/PLA, from Protopasta®) filament. The 3D printed Gpt/PLA electrode "in the native form" provided lower charge transfer resistance (Rct = 880 Ω) and a more kinetically favored reaction (K = 1.48 × 10 cm s) compared to the 3D printed CB/PLA electrode (chemically/electrochemically treated). Moreover, a method by batch injection analysis with amperometric detection (BIA-AD) was developed to determine atorvastatin (ATR) in pharmaceutical and water samples. Using the 3D printed Gpt/PLA electrode, a wider linear range (1-200 μmol L), sensitivity (3-times higher), and lower detection limit (LOD = 0.13 μmol L) were achieved when compared to the CB/PLA electrode. Repeatability studies (n = 15, RSD <7.3%) attested to the precision of the electrochemical measurements, and recovery percentages between 83 and 108% confirmed the accuracy of the method. Remarkably, this is the first time that ATR has been determined by the BIA-AD system and a low-cost 3D-printed device. This approach is promising to be implemented in research laboratories for quality control of pharmaceuticals and can also be useful for on-site environmental analysis.
这项工作将实验室制造的导电石墨/聚乳酸(Grp/PLA,40:60%w/w)长丝集成到 3D 笔中,以打印定制电极(圆柱形设计)。热重分析验证了石墨掺入 PLA 基质中,而拉曼光谱和扫描电子显微镜图像分别表明存在石墨结构,存在缺陷和高度多孔。系统比较了 3D 打印 Gpt/PLA 电极与使用商业碳黑/聚乳酸(CB/PLA,来自 Protopasta®)长丝获得的电化学性能。与经过化学/电化学处理的 3D 打印 CB/PLA 电极相比,“原生”3D 打印 Gpt/PLA 电极的电荷转移电阻(Rct=880Ω)更低,反应动力学更有利(K=1.48×10cm s)。此外,还开发了一种批量注射分析与安培检测(BIA-AD)方法,用于测定药物和水样中的阿托伐他汀(ATR)。与 CB/PLA 电极相比,使用 3D 打印 Gpt/PLA 电极可获得更宽的线性范围(1-200μmol L)、更高的灵敏度(高 3 倍)和更低的检测限(LOD=0.13μmol L)。重复性研究(n=15,RSD<7.3%)证明了电化学测量的精度,回收率在 83%至 108%之间,证实了该方法的准确性。值得注意的是,这是首次使用 BIA-AD 系统和低成本 3D 打印设备来测定 ATR。该方法有望在研究实验室中用于药物质量控制,并可用于现场环境分析。