Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland.
IWR, Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany.
Neural Netw. 2023 Aug;165:721-739. doi: 10.1016/j.neunet.2023.06.008. Epub 2023 Jun 9.
On general regular simplicial partitions T of bounded polytopal domains Ω⊂R, d∈{2,3}, we construct exact neural network (NN) emulations of all lowest order finite element spaces in the discrete de Rham complex. These include the spaces of piecewise constant functions, continuous piecewise linear (CPwL) functions, the classical "Raviart-Thomas element", and the "Nédélec edge element". For all but the CPwL case, our network architectures employ both ReLU (rectified linear unit) and BiSU (binary step unit) activations to capture discontinuities. In the important case of CPwL functions, we prove that it suffices to work with pure ReLU nets. Our construction and DNN architecture generalizes previous results in that no geometric restrictions on the regular simplicial partitions T of Ω are required for DNN emulation. In addition, for CPwL functions our DNN construction is valid in any dimension d≥2. Our "FE-Nets" are required in the variationally correct, structure-preserving approximation of boundary value problems of electromagnetism in nonconvex polyhedra Ω⊂R. They are thus an essential ingredient in the application of e.g., the methodology of "physics-informed NNs" or "deep Ritz methods" to electromagnetic field simulation via deep learning techniques. We indicate generalizations of our constructions to higher-order compatible spaces and other, non-compatible classes of discretizations, in particular the "Crouzeix-Raviart" elements and Hybridized, Higher Order (HHO) methods.
对于有界多面域Ω⊂R 上的一般正则单纯剖分 T,d∈{2,3},我们构造了离散 de Rham 复形中所有最低阶有限元空间的精确神经网络 (NN) 仿真。这些空间包括分片常数函数空间、连续分片线性 (CPwL) 函数空间、经典的“Raviart-Thomas 元”和“Nédélec 边缘元”。除 CPwL 情况外,我们的网络架构都同时使用 ReLU(修正线性单元)和 BiSU(二进制步长单元)激活函数来捕获不连续性。对于 CPwL 函数的重要情况,我们证明只需要使用纯 ReLU 网络即可。我们的构造和 DNN 架构推广了以前的结果,即不需要对 Ω 的正则单纯剖分 T 施加任何几何限制即可进行 DNN 仿真。此外,对于 CPwL 函数,我们的 DNN 构造在任何维度 d≥2 中都是有效的。我们的“FE-Nets”在非凸多面体Ω⊂R 中的电磁场边值问题的变分正确、结构保持逼近中是必需的。因此,它们是应用例如“物理信息神经网络”或“深度学习里的深度里兹方法”等方法通过深度学习技术进行电磁场模拟的重要组成部分。我们还指出了我们的构造在高阶相容空间和其他非相容离散化类(特别是“Crouzeix-Raviart”元)中的推广,以及混合高阶 (HHO) 方法。