Zhao Jianjun, Zhou Miaomiao, Chen Jun, Wang Luyi, Zhang Qian, Zhong Shengwen, Xie Haijiao, Li Yutao
School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology, Ganzhou, 341000, China.
State Key Laboratory of Chemical Resources Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
Small. 2023 Nov;19(44):e2303353. doi: 10.1002/smll.202303353. Epub 2023 Jun 30.
This work reports a covalent organic framework composite structure (PMDA-NiPc-G), incorporating multiple-active carbonyls and graphene on the basis of the combination of phthalocyanine (NiPc(NH ) ) containing a large π-conjugated system and pyromellitic dianhydride (PMDA) as the anode of lithium-ion batteries. Meanwhile, graphene is used as a dispersion medium to reduce the accumulation of bulk covalent organic frameworks (COFs) to obtain COFs with small-volume and few-layers, shortening the ion migration path and improving the diffusion rate of lithium ions in the two dimensional (2D) grid layered structure. PMDA-NiPc-G showed a lithium-ion diffusion coefficient (D ) of 3.04 × 10 cm s which is 3.6 times to that of its bulk form (0.84 × 10 cm s ). Remarkably, this enables a large reversible capacity of 1290 mAh g can be achieved after 300 cycles and almost no capacity fading in the next 300 cycles at 100 mA g . At a high areal capacity loading of ≈3 mAh cm , full batteries assembled with LiNi Co Mn O (NCM-811) and LiFePO (LFP) cathodes showed 60.2% and 74.7% capacity retention at 1 C for 200 cycles. Astonishingly, the PMDA-NiPc-G/NCM-811 full battery exhibits ≈100% capacity retention after cycling at 0.2 C. Aided by the analysis of kinetic behavior of lithium storage and theoretical calculations, the capacity-enhancing mechanism and lithium storage mechanism of covalent organic frameworks are revealed. This work may lead to more research on designable, multifunctional COFs for electrochemical energy storage.
本工作报道了一种共价有机框架复合结构(PMDA-NiPc-G),它在含有大π共轭体系的酞菁(NiPc(NH ) )和均苯四甲酸二酐(PMDA)相结合的基础上,引入了多个活性羰基和石墨烯作为锂离子电池的阳极。同时,石墨烯用作分散介质,以减少块状共价有机框架(COF)的堆积,从而获得小体积、少层数的COF,缩短离子迁移路径并提高锂离子在二维(2D)网格层状结构中的扩散速率。PMDA-NiPc-G的锂离子扩散系数(D )为3.04×10 cm² s⁻¹,是其块状形式(0.84×10 cm² s⁻¹)的3.6倍。值得注意的是,在100 mA g⁻¹的电流密度下,经过300次循环后,它能够实现1290 mAh g⁻¹的大可逆容量,并且在接下来的300次循环中几乎没有容量衰减。在≈3 mAh cm⁻²的高面容量负载下,与LiNi₀.₈Co₀.₁Mn₀.₁O₂(NCM-811)和LiFePO₄(LFP)阴极组装的全电池在1 C下循环200次后,容量保持率分别为60.2%和74.7%。令人惊讶的是,PMDA-NiPc-G/NCM-811全电池在0.2 C下循环后表现出≈100%的容量保持率。通过对储锂动力学行为的分析和理论计算,揭示了共价有机框架的容量增强机制和储锂机制。这项工作可能会引发更多关于用于电化学储能的可设计、多功能COF的研究。