Suppr超能文献

非传统肥胖研究数据源:肥胖环境研究中使用这些数据源的系统评价。

Non-traditional data sources in obesity research: a systematic review of their use in the study of obesogenic environments.

机构信息

Health Sciences Research Institute (INICSA), National Council of Scientific and Technical Research (CONICET), Faculty of Medical Sciences, National University of Córdoba, Bv. De La Reforma, Ciudad Universitaria, Zip Code 5000, Córdoba, Argentina.

Human Nutrition Research Centre (CenINH), School of Nutrition, Faculty of Medical Sciences, National University of Córdoba, Bv. De La Reforma, Ciudad Universitaria, Zip Code 5000, Córdoba, Argentina.

出版信息

Int J Obes (Lond). 2023 Aug;47(8):686-696. doi: 10.1038/s41366-023-01331-3. Epub 2023 Jul 1.

Abstract

BACKGROUND

The complex nature of obesity increasingly requires a comprehensive approach that includes the role of environmental factors. For understanding contextual determinants, the resources provided by technological advances could become a key factor in obesogenic environment research. This study aims to identify different sources of non-traditional data and their applications, considering the domains of obesogenic environments: physical, sociocultural, political and economic.

METHODS

We conducted a systematic search in PubMed, Scopus and LILACS databases by two independent groups of reviewers, from September to December 2021. We included those studies oriented to adult obesity research using non-traditional data sources, published in the last 5 years in English, Spanish or Portuguese. The overall reporting followed the PRISMA guidelines.

RESULTS

The initial search yielded 1583 articles, 94 articles were kept for full-text screening, and 53 studies met the eligibility criteria and were included. We extracted information about countries of origin, study design, observation units, obesity-related outcomes, environment variables, and non-traditional data sources used. Our results revealed that most of the studies originated from high-income countries (86.54%) and used geospatial data within a GIS (76.67%), social networks (16.67%), and digital devices (11.66%) as data sources. Geospatial data were the most utilised data source and mainly contributed to the study of the physical domains of obesogenic environments, followed by social networks providing data to the analysis of the sociocultural domain. A gap in the literature exploring the political domain of environments was also evident.

CONCLUSION

The disparities between countries are noticeable. Geospatial and social network data sources contributed to studying the physical and sociocultural environments, which could be a valuable complement to those traditionally used in obesity research. We propose the use of information available on the Internet, addressed by artificial intelligence-based tools, to increase the knowledge on political and economic dimensions of the obesogenic environment.

摘要

背景

肥胖问题的复杂性日益要求采取综合方法,包括环境因素的作用。为了了解背景决定因素,技术进步提供的资源可能成为肥胖环境研究的关键因素。本研究旨在确定不同非传统数据来源及其应用,考虑肥胖环境的物理、社会文化、政治和经济领域。

方法

我们由两组独立的评审员于 2021 年 9 月至 12 月在 PubMed、Scopus 和 LILACS 数据库中进行了系统检索。我们纳入了使用非传统数据源针对成人肥胖研究的那些研究,这些研究在过去 5 年中以英文、西班牙语或葡萄牙语发表。整体报告遵循 PRISMA 指南。

结果

最初的搜索产生了 1583 篇文章,94 篇文章被保留进行全文筛选,53 项研究符合入选标准并被纳入。我们提取了有关原籍国、研究设计、观察单位、肥胖相关结局、环境变量和使用的非传统数据来源的信息。我们的结果表明,大多数研究来自高收入国家(86.54%),并在 GIS 内使用了地理空间数据(76.67%)、社交网络(16.67%)和数字设备(11.66%)作为数据源。地理空间数据是使用最多的数据源,主要用于研究肥胖环境的物理领域,其次是提供数据用于分析社会文化领域的社交网络。还明显存在探索环境政治领域文献的差距。

结论

各国之间的差距是显而易见的。地理空间和社交网络数据源有助于研究物理和社会文化环境,这可能是肥胖研究中传统方法的宝贵补充。我们建议使用人工智能工具处理的互联网上可用的信息来增加对肥胖环境政治和经济维度的了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验