Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh, India.
Department of Pharmacology, Meharishi Markandeshwar College of Medical Science & Research, Ambala, India.
J Alzheimers Dis. 2023;94(s1):S453-S472. doi: 10.3233/JAD-220514.
Citrate synthase is a key mitochondrial enzyme that utilizes acetyl-CoA and oxaloacetate to form citrate in the mitochondrial membrane, which participates in energy production in the TCA cycle and linked to the electron transport chain. Citrate transports through a citrate malate pump and synthesizes acetyl-CoA and acetylcholine (ACh) in neuronal cytoplasm. In a mature brain, acetyl-CoA is mainly utilized for ACh synthesis and is responsible for memory and cognition. Studies have shown low citrate synthase in different regions of brain in Alzheimer's disease (AD) patients, which reduces mitochondrial citrate, cellular bioenergetics, neurocytoplasmic citrate, acetyl-CoA, and ACh synthesis. Reduced citrate mediated low energy favors amyloid-β (Aβ) aggregation. Citrate inhibits Aβ25-35 and Aβ1-40 aggregation in vitro. Hence, citrate can be a better therapeutic option for AD by improving cellular energy and ACh synthesis, and inhibiting Aβ aggregation, which prevents tau hyperphosphorylation and glycogen synthase kinase-3 beta. Therefore, we need clinical studies if citrate reverses Aβ deposition by balancing mitochondrial energy pathway and neurocytoplasmic ACh production. Furthermore, in AD's silent phase pathophysiology, when neuronal cells are highly active, they shift ATP utilization from oxidative phosphorylation to glycolysis and prevent excessive generation of hydrogen peroxide and reactive oxygen species (oxidative stress) as neuroprotective action, which upregulates glucose transporter-3 (GLUT3) and pyruvate dehydrogenase kinase-3 (PDK3). PDK3 inhibits pyruvate dehydrogenase, which decreases mitochondrial-acetyl-CoA, citrate, and cellular bioenergetics, and decreases neurocytoplasmic citrate, acetyl-CoA, and ACh formation, thus initiating AD pathophysiology. Therefore, GLUT3 and PDK3 can be biomarkers for silent phase of AD.
柠檬酸合酶是一种关键的线粒体酶,它利用乙酰辅酶 A 和草酰乙酸在线粒体膜中形成柠檬酸,参与三羧酸循环中的能量产生,并与电子传递链相连。柠檬酸通过柠檬酸-苹果酸转运体转运,并在神经元细胞质中合成乙酰辅酶 A 和乙酰胆碱(ACh)。在成熟的大脑中,乙酰辅酶 A 主要用于 ACh 合成,负责记忆和认知。研究表明,阿尔茨海默病(AD)患者大脑的不同区域柠檬酸合酶水平较低,导致线粒体柠檬酸、细胞生物能、神经细胞质柠檬酸、乙酰辅酶 A 和 ACh 合成减少。减少的柠檬酸介导的能量不足有利于淀粉样蛋白-β(Aβ)聚集。柠檬酸在体外抑制 Aβ25-35 和 Aβ1-40 聚集。因此,柠檬酸可以通过改善细胞能量和 ACh 合成,抑制 Aβ 聚集,从而预防 tau 过度磷酸化和糖原合酶激酶-3β,成为 AD 的更好治疗选择。因此,我们需要进行临床试验,以确定柠檬酸是否通过平衡线粒体能量途径和神经细胞质 ACh 产生来逆转 Aβ 沉积。此外,在 AD 的沉默期病理生理学中,当神经元细胞高度活跃时,它们会将 ATP 利用从氧化磷酸化转变为糖酵解,并防止过氧化氢和活性氧(氧化应激)的过度产生,作为神经保护作用,从而上调葡萄糖转运蛋白-3(GLUT3)和丙酮酸脱氢酶激酶-3(PDK3)。PDK3 抑制丙酮酸脱氢酶,减少线粒体乙酰辅酶 A、柠檬酸和细胞生物能,并减少神经细胞质柠檬酸、乙酰辅酶 A 和 ACh 的形成,从而引发 AD 病理生理学。因此,GLUT3 和 PDK3 可以作为 AD 沉默期的生物标志物。