Suppr超能文献

应用低表观扩散系数像素截断技术的计算扩散加权成像在乳腺癌检测中的应用。

Computed diffusion-weighted imaging with a low-apparent diffusion coefficient-pixel cut-off technique for breast cancer detection.

机构信息

Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan.

Department of Biomedical Engineering, Tokai University School of Engineering, Hiratsuka, Japan.

出版信息

Br J Radiol. 2023 Nov;96(1151):20220951. doi: 10.1259/bjr.20220951. Epub 2023 Jul 10.

Abstract

OBJECTIVE

This study aimed to compare the image quality and diagnostic performance of computed diffusion-weighted imaging (DWI) with low-apparent diffusion coefficient (ADC)-pixel cut-off technique (cDWI cut-off) and actual measured DWI (mDWI).

METHODS

Eighty-seven consecutive patients with malignant breast lesions and 72 with negative breast lesions who underwent breast MRI were retrospectively evaluated. Computed DWI with high b-values of 800, 1200, and 1500 s/mm and ADC cut-off thresholds of none, 0, 0.3, and 0.6 (×10 mm/s) were generated from DWI with two b-values (0 and 800 s/mm). To identify the optimal conditions, two radiologists evaluated the fat suppression and lesion reduction failure using a cut-off technique. The contrast between breast cancer and glandular tissue was evaluated using region of interest analysis. Three other board-certified radiologists independently assessed the optimised cDWI cut-off and mDWI data sets. Diagnostic performance was evaluated using receiver operating characteristic (ROC) analysis.

RESULTS

When an ADC cut-off threshold of 0.3 or 0.6 (× 10 mm/s) was applied, fat suppression improved significantly ( < .05). The contrast of the cDWI cut-off with a b-value of 1200 or 1500 s/mm was better than the mDWI ( < .01). The ROC area under the curve for breast cancer detection was 0.837 for the mDWI and 0.909 for the cDWI cut-off ( < .01).

CONCLUSION

The cDWI cut-off provided better diagnostic performance than mDWI for breast cancer detection.

ADVANCES IN KNOWLEDGE

Using the low-ADC-pixel cut-off technique, computed DWI can improve diagnostic performance by increasing contrast and eliminating un-suppressed fat signals.

摘要

目的

本研究旨在比较低表观扩散系数(ADC)-像素截断技术(cDWI 截断)和实际测量弥散加权成像(mDWI)的图像质量和诊断性能。

方法

回顾性分析 87 例恶性乳腺病变和 72 例乳腺阴性病变患者的乳腺 MRI 检查资料。在双 b 值(0 和 800 s/mm)弥散加权成像(DWI)的基础上生成高 b 值(800、1200 和 1500 s/mm)的计算 DWI 以及 ADC 截断阈值为 0、0.3 和 0.6(×10 mm/s)。两位放射科医生使用截断技术评估脂肪抑制和病变检出失败情况,以确定最佳条件。使用感兴趣区分析评估乳腺癌与腺体组织之间的对比度。另外三位经过认证的放射科医生独立评估优化后的 cDWI 截断和 mDWI 数据集。使用受试者工作特征(ROC)分析评估诊断性能。

结果

当应用 ADC 截断阈值为 0.3 或 0.6(×10 mm/s)时,脂肪抑制明显改善(<0.05)。b 值为 1200 或 1500 s/mm 时,cDWI 截断的对比度优于 mDWI(<0.01)。乳腺癌检测的 mDWI 和 cDWI 截断的 ROC 曲线下面积分别为 0.837 和 0.909(<0.01)。

结论

cDWI 截断用于乳腺癌检测的诊断性能优于 mDWI。

知识进展

使用低 ADC 像素截断技术,计算 DWI 可以通过增加对比度和消除未抑制的脂肪信号来提高诊断性能。

相似文献

2
Feasibility and Diagnostic Performance of Voxelwise Computed Diffusion-Weighted Imaging in Breast Cancer.
J Magn Reson Imaging. 2019 Jun;49(6):1610-1616. doi: 10.1002/jmri.26533. Epub 2018 Oct 16.
3
Evaluation of Exponential ADC (eADC) and Computed DWI (cDWI) for the Detection of Prostate Cancer.
Rofo. 2018 Aug;190(8):758-766. doi: 10.1055/a-0637-9980. Epub 2018 Jul 25.
4
Computed high-b-value high-resolution DWI improves solid lesion detection in IPMN of the pancreas.
Eur Radiol. 2023 Oct;33(10):6892-6901. doi: 10.1007/s00330-023-09661-6. Epub 2023 May 3.
5
Quantitative evaluation of computed and voxelwise computed diffusion-weighted imaging in breast cancer.
Br J Radiol. 2019 Aug;92(1100):20180978. doi: 10.1259/bjr.20180978. Epub 2019 Jul 10.
7
Breast DWI at 3 T: influence of the fat-suppression technique on image quality and diagnostic performance.
Clin Radiol. 2015 Mar;70(3):286-94. doi: 10.1016/j.crad.2014.11.012. Epub 2014 Dec 30.
8
Diffusion-weighted imaging: determination of the best pair of b-values to discriminate breast lesions.
Br J Radiol. 2014 Jul;87(1039):20130807. doi: 10.1259/bjr.20130807. Epub 2014 May 16.
10

本文引用的文献

4
Diffusion-weighted MRI for Unenhanced Breast Cancer Screening.
Radiology. 2019 Dec;293(3):504-520. doi: 10.1148/radiol.2019182789. Epub 2019 Oct 8.
5
Quantitative evaluation of computed and voxelwise computed diffusion-weighted imaging in breast cancer.
Br J Radiol. 2019 Aug;92(1100):20180978. doi: 10.1259/bjr.20180978. Epub 2019 Jul 10.
6
Diffusion-Weighted MRI of Breast Cancer: Improved Lesion Visibility and Image Quality Using Synthetic b-Values.
J Magn Reson Imaging. 2019 Dec;50(6):1754-1761. doi: 10.1002/jmri.26809. Epub 2019 May 28.
7
Feasibility and Diagnostic Performance of Voxelwise Computed Diffusion-Weighted Imaging in Breast Cancer.
J Magn Reson Imaging. 2019 Jun;49(6):1610-1616. doi: 10.1002/jmri.26533. Epub 2018 Oct 16.
9
How to Improve the Conspicuity of Breast Tumors on Computed High b-value Diffusion-weighted Imaging.
Magn Reson Med Sci. 2019 Apr 10;18(2):119-125. doi: 10.2463/mrms.mp.2018-0011. Epub 2018 Jul 13.
10
Maximum intensity breast diffusion MRI for BI-RADS 4 lesions detected on X-ray mammography.
Clin Radiol. 2017 Oct;72(10):900.e1-900.e8. doi: 10.1016/j.crad.2017.05.017. Epub 2017 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验