Suppr超能文献

从激素敏感性到去势抵抗性前列腺癌快速进展患者的识别:一项回顾性研究。

Identifying Patients With Rapid Progression From Hormone-Sensitive to Castration-Resistant Prostate Cancer: A Retrospective Study.

机构信息

Department of Urology, The Second Hospital of Dalian Medical University, Dalian, China.

Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China.

出版信息

Mol Cell Proteomics. 2023 Sep;22(9):100613. doi: 10.1016/j.mcpro.2023.100613. Epub 2023 Jun 30.

Abstract

Prostate cancer (PCa) is the second most prevalent malignancy and the fifth cause of cancer-related deaths in men. A crucial challenge is identifying the population at risk of rapid progression from hormone-sensitive prostate cancer (HSPC) to lethal castration-resistant prostate cancer (CRPC). We collected 78 HSPC biopsies and measured their proteomes using pressure cycling technology and a pulsed data-independent acquisition pipeline. We quantified 7355 proteins using these HSPC biopsies. A total of 251 proteins showed differential expression between patients with a long- or short-term progression to CRPC. Using a random forest model, we identified seven proteins that significantly discriminated long- from short-term progression patients, which were used to classify PCa patients with an area under the curve of 0.873. Next, one clinical feature (Gleason sum) and two proteins (BGN and MAPK11) were found to be significantly associated with rapid disease progression. A nomogram model using these three features was generated for stratifying patients into groups with significant progression differences (p-value = 1.3×10). To conclude, we identified proteins associated with a fast progression to CRPC and an unfavorable prognosis. Based on these proteins, our machine learning and nomogram models stratified HSPC into high- and low-risk groups and predicted their prognoses. These models may aid clinicians in predicting the progression of patients, guiding individualized clinical management and decisions.

摘要

前列腺癌(PCa)是第二大常见恶性肿瘤,也是男性癌症相关死亡的第五大原因。一个关键的挑战是确定有风险从激素敏感型前列腺癌(HSPC)快速进展为致命的去势抵抗性前列腺癌(CRPC)的人群。我们收集了 78 例 HSPC 活检样本,并使用压力循环技术和脉冲数据独立采集管道测量了它们的蛋白质组。我们使用这些 HSPC 活检样本定量了 7355 种蛋白质。共有 251 种蛋白质在向 CRPC 进展时间长或短的患者之间表现出差异表达。使用随机森林模型,我们确定了七个能显著区分长期和短期进展患者的蛋白质,这些蛋白质用于分类 PCa 患者的曲线下面积为 0.873。接下来,一个临床特征(Gleason 总和)和两个蛋白质(BGN 和 MAPK11)被发现与快速疾病进展显著相关。使用这三个特征生成了列线图模型,用于将患者分为具有显著进展差异的组(p 值=1.3×10)。总之,我们确定了与快速进展为 CRPC 和不良预后相关的蛋白质。基于这些蛋白质,我们的机器学习和列线图模型将 HSPC 分为高风险和低风险组,并预测了它们的预后。这些模型可能有助于临床医生预测患者的进展,指导个体化的临床管理和决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96e9/10491655/5978eac640c0/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验