Suppr超能文献

当目的无法证明手段的合理性时:了解谁被预测会产生有害的间接影响。

When the Ends do not Justify the Means: Learning Who is Predicted to Have Harmful Indirect Effects.

作者信息

Rudolph Kara E, Díaz Iván

机构信息

Department of Epidemiology, Mailman School of Public Health, Columbia University.

Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine.

出版信息

J R Stat Soc Ser A Stat Soc. 2022 Dec;185(Suppl 2):S573-S589. doi: 10.1111/rssa.12951. Epub 2022 Nov 8.

Abstract

There is a growing literature on finding rules by which to assign treatment based on an individual's characteristics such that a desired outcome under the intervention is maximized. A related goal entails identifying a subpopulation of individuals predicted to have a harmful indirect effect (the effect of treatment on an outcome through mediators), perhaps even in the presence of a predicted beneficial total treatment effect. In some cases, the implications of a likely harmful indirect effect may outweigh an anticipated beneficial total treatment effect, and would motivate further discussion of whether to treat identified individuals. We build on the mediation and optimal treatment rule literatures to propose a method of identifying a subgroup for which the treatment effect through the mediator is expected to be harmful. Our approach is nonparametric, incorporates post-treatment confounders of the mediator-outcome relationship, and does not make restrictions on the distribution of baseline covariates, mediating variables, or outcomes. We apply the proposed approach to identify a subgroup of boys in the MTO housing voucher experiment who are predicted to have a harmful indirect effect of housing voucher receipt on subsequent psychiatric disorder incidence through aspects of their school and neighborhood environments.

摘要

关于寻找基于个体特征分配治疗的规则,以使干预下的期望结果最大化的文献越来越多。一个相关目标是识别出预计会产生有害间接效应(治疗通过中介因素对结果的影响)的个体亚群,甚至可能是在预计总体治疗效果有益的情况下。在某些情况下,可能有害的间接效应的影响可能超过预期的总体治疗有益效果,并会促使进一步讨论是否对已识别的个体进行治疗。我们基于中介和最优治疗规则文献,提出一种识别通过中介因素的治疗效果预计有害的亚组的方法。我们的方法是非参数的,纳入了中介因素与结果关系的治疗后混杂因素,并且不对基线协变量、中介变量或结果的分布进行限制。我们应用所提出的方法,在MTO住房券实验中识别出一个男孩亚组,预计他们通过学校和邻里环境方面,住房券领取对随后精神疾病发病率会产生有害间接效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6149/10312488/f406e6a309c0/nihms-1861507-f0001.jpg

相似文献

引用本文的文献

1
Improving efficiency in transporting average treatment effects.提高平均治疗效果的运输效率。
Biometrika. 2025;112(3). doi: 10.1093/biomet/asaf027. Epub 2025 Apr 8.

本文引用的文献

1
On Partial Identification of the Natural Indirect Effect.关于自然间接效应的部分识别
J Causal Inference. 2017 Sep;5(2). doi: 10.1515/jci-2016-0004. Epub 2017 Feb 28.
3
Outcome trajectory estimation for optimal dynamic treatment regimes with repeated measures.具有重复测量的最优动态治疗方案的结果轨迹估计
J R Stat Soc Ser C Appl Stat. 2023 May 22;72(4):976-991. doi: 10.1093/jrsssc/qlad037. eCollection 2023 Aug.
4
Complier stochastic direct effects: identification and robust estimation.依从性随机直接效应:识别与稳健估计
J Am Stat Assoc. 2021;116(535):1254-1264. doi: 10.1080/01621459.2019.1704292. Epub 2020 Jan 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验