Yazdanbakhsh Arash, Barbas Helen, Zikopoulos Basilis
Computational Neuroscience and Vision Lab, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
Netw Neurosci. 2023 Jun 30;7(2):743-768. doi: 10.1162/netn_a_00311. eCollection 2023.
Sleep spindles are associated with the beginning of deep sleep and memory consolidation and are disrupted in schizophrenia and autism. In primates, distinct core and matrix thalamocortical (TC) circuits regulate sleep spindle activity through communications that are filtered by the inhibitory thalamic reticular nucleus (TRN); however, little is known about typical TC network interactions and the mechanisms that are disrupted in brain disorders. We developed a primate-specific, circuit-based TC computational model with distinct core and matrix loops that can simulate sleep spindles. We implemented novel multilevel cortical and thalamic mixing, and included local thalamic inhibitory interneurons, and direct layer 5 projections of variable density to TRN and thalamus to investigate the functional consequences of different ratios of core and matrix node connectivity contribution to spindle dynamics. Our simulations showed that spindle power in primates can be modulated based on the level of cortical feedback, thalamic inhibition, and engagement of model core versus matrix, with the latter having a greater role in spindle dynamics. The study of the distinct spatial and temporal dynamics of core-, matrix-, and mix-generated sleep spindles establishes a framework to study disruption of TC circuit balance underlying deficits in sleep and attentional gating seen in autism and schizophrenia.
睡眠纺锤波与深度睡眠的开始和记忆巩固相关,在精神分裂症和自闭症中会受到干扰。在灵长类动物中,不同的核心和基质丘脑皮质(TC)回路通过由抑制性丘脑网状核(TRN)过滤的通信来调节睡眠纺锤波活动;然而,对于典型的TC网络相互作用以及在脑部疾病中被破坏的机制知之甚少。我们开发了一种基于灵长类动物特定回路的TC计算模型,该模型具有不同的核心和基质环路,可以模拟睡眠纺锤波。我们实现了新颖的多层次皮质和丘脑混合,并纳入了局部丘脑抑制性中间神经元,以及向TRN和丘脑的可变密度的直接第5层投射,以研究核心和基质节点连接性对纺锤波动力学的不同比例的功能后果。我们的模拟表明,灵长类动物的纺锤波功率可以根据皮质反馈水平、丘脑抑制以及模型核心与基质的参与程度进行调节,其中后者在纺锤波动力学中起更大作用。对核心、基质和混合产生的睡眠纺锤波的不同时空动态的研究建立了一个框架,以研究自闭症和精神分裂症中睡眠和注意力门控缺陷背后的TC回路平衡破坏。