Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1023, New Zealand.
MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand.
J Mater Chem B. 2023 Aug 30;11(34):8170-8181. doi: 10.1039/d3tb01085f.
With the emergence of deadly viral and bacterial infections, preventing the spread of microorganisms on surfaces has gained ever-increasing importance. This study investigates the potential of solid-state supercapacitors as antibacterial and antiviral devices. We developed a low-cost and flexible carbon cloth supercapacitor (CCSC) with highly efficient antibacterial and antiviral surface properties. The CCSC comprised two parallel layers of carbon cloth (CC) electrodes assembled in a symmetric, electrical double-layer supercapacitor structure that can be charged at low potentials between 1 to 2 V. The optimized CCSC exhibited a capacitance of 4.15 ± 0.3 mF cm at a scan rate of 100 mV s, high-rate capability (83% retention of capacitance at 100 mV s compared to its value at 5 mV s), and excellent electrochemical stability (97% retention of the initial capacitance after 1000 cycles). Moreover, the CCSC demonstrated outstanding flexibility and retained its full capacitance even when bent at high angles, making it suitable for wearable or flexible devices. Using its stored electrical charge, the charged CCSC disinfects bacteria effectively and neutralizes viruses upon surface contact with the positive and negative electrodes. The charged CCSC device yielded a 6-log CFU reduction of Escherichia coli bacterial inocula and a 5-log PFU reduction of HSV-1 herpes virus. Antibacterial and antiviral carbon cloth supercapacitors represent a promising platform technology for various applications, including electronic textiles and electronic skins, health monitoring or motion sensors, wound dressings, personal protective equipment (, masks) and air filtration systems.
随着致命病毒和细菌感染的出现,防止微生物在表面传播变得越来越重要。本研究探讨了固态超级电容器作为抗菌和抗病毒装置的潜力。我们开发了一种低成本且灵活的碳纤维布超级电容器(CCSC),具有高效的抗菌和抗病毒表面性能。CCS 由两层平行的碳纤维布(CC)电极组装而成,采用对称的双电层超级电容器结构,可在 1 至 2 V 的低电位下充电。优化后的 CCSC 在 100 mV s 的扫描速率下表现出 4.15 ± 0.3 mF cm 的电容,具有高倍率性能(与 5 mV s 时的电容相比,100 mV s 时保持 83%的电容)和出色的电化学稳定性(1000 次循环后保持初始电容的 97%)。此外,CCS 还表现出出色的柔韧性,即使在高角度弯曲时也能保持其全部电容,使其适用于可穿戴或柔性设备。CCS 利用其存储的电荷,在与正负极表面接触时,可有效消毒细菌并中和病毒。充电后的 CCSC 器件可使大肠杆菌细菌接种物减少 6 个对数 CFU,HSV-1 疱疹病毒减少 5 个对数 PFU。抗菌和抗病毒碳纤维布超级电容器代表了一种有前途的平台技术,可用于各种应用,包括电子纺织品和电子皮肤、健康监测或运动传感器、伤口敷料、个人防护设备(如口罩)和空气过滤系统。