Suppr超能文献

基于卷积层去卷积的胸部断层合成图像去模糊用于脊椎分割的卷积神经网络。

Chest tomosynthesis deblurring using CNN with deconvolution layer for vertebrae segmentation.

机构信息

School of Integrated Technology, Yonsei University, Incheon, South Korea.

Department of Artificial Intelligence, College of Computing, Yonsei University, Incheon, South Korea.

出版信息

Med Phys. 2023 Dec;50(12):7714-7730. doi: 10.1002/mp.16576. Epub 2023 Jul 4.

Abstract

BACKGROUND

Limited scan angles cause severe distortions and artifacts in reconstructed tomosynthesis images when the Feldkamp-Davis-Kress (FDK) algorithm is used for the purpose, which degrades clinical diagnostic performance. These blurring artifacts are fatal in chest tomosynthesis images because precise vertebrae segmentation is crucial for various diagnostic analyses, such as early diagnosis, surgical planning, and injury detection. Moreover, because most spinal pathologies are related to vertebral conditions, the development of methods for accurate and objective vertebrae segmentation in medical images is an important and challenging research area.

PURPOSE

The existing point-spread-function-(PSF)-based deblurring methods use the same PSF in all sub-volumes without considering the spatially varying property of tomosynthesis images. This increases the PSF estimation error, thus further degrading the deblurring performance. However, the proposed method estimates the PSF more accurately by using sub-CNNs that contain a deconvolution layer for each sub-system, which improves the deblurring performance.

METHODS

To minimize the effect of the spatially varying property, the proposed deblurring network architecture comprises four modules: (1) block division module, (2) partial PSF module, (3) deblurring block module, and (4) assembling block module. We compared the proposed DL-based method with the FDK algorithm, total-variation iterative reconstruction with GP-BB (TV-IR), 3D U-Net, FBPConvNet, and two-phase deblurring method. To investigate the deblurring performance of the proposed method, we evaluated its vertebrae segmentation performance by comparing the pixel accuracy (PA), intersection-over-union (IoU), and F-score values of reference images to those of the deblurred images. Also, pixel-based evaluations of the reference and deblurred images were performed by comparing their root mean squared error (RMSE) and visual information fidelity (VIF) values. In addition, 2D analysis of the deblurred images were performed by artifact spread function (ASF) and full width half maximum (FWHM) of the ASF curve.

RESULTS

The proposed method was able to recover the original structure significantly, thereby further improving the image quality. The proposed method yielded the best deblurring performance in terms of vertebrae segmentation and similarity. The IoU, F-score, and VIF values of the chest tomosynthesis images reconstructed using the proposed SV method were 53.5%, 28.7%, and 63.2% higher, respectively, than those of the images reconstructed using the FDK method, and the RMSE value was 80.3% lower. These quantitative results indicate that the proposed method can effectively restore both the vertebrae and the surrounding soft tissue.

CONCLUSIONS

We proposed a chest tomosynthesis deblurring technique for vertebrae segmentation by considering the spatially varying property of tomosynthesis systems. The results of quantitative evaluations indicated that the vertebrae segmentation performance of the proposed method was better than those of the existing deblurring methods.

摘要

背景

当 Feldkamp-Davis-Kress(FDK)算法用于层析合成时,有限的扫描角度会导致重建的断层合成图像严重扭曲和伪影,从而降低临床诊断性能。这些模糊伪影在胸部断层合成图像中是致命的,因为精确的椎体分割对于各种诊断分析至关重要,如早期诊断、手术规划和损伤检测。此外,由于大多数脊柱疾病与椎体状况有关,因此开发用于医学图像中准确和客观的椎体分割的方法是一个重要且具有挑战性的研究领域。

目的

现有的基于点扩散函数(PSF)的去模糊方法在所有子体积中使用相同的 PSF,而不考虑层析合成图像的空间变化特性。这会增加 PSF 估计误差,从而进一步降低去模糊性能。然而,所提出的方法通过使用包含每个子系统的去卷积层的子-CNN 更准确地估计 PSF,从而提高了去模糊性能。

方法

为了最小化空间变化特性的影响,所提出的去模糊网络架构包括四个模块:(1)块划分模块,(2)部分 PSF 模块,(3)去模糊块模块和(4)组装块模块。我们将基于 DL 的方法与 FDK 算法、具有 GP-BB 的全变分迭代重建(TV-IR)、3D U-Net、FBPConvNet 和两阶段去模糊方法进行了比较。为了研究所提出方法的去模糊性能,我们通过比较参考图像和去模糊图像的像素精度(PA)、交并比(IoU)和 F 分数值,评估了其椎体分割性能。此外,通过比较参考图像和去模糊图像的均方根误差(RMSE)和视觉信息保真度(VIF)值,对参考图像和去模糊图像进行了基于像素的评估。此外,通过artifact spread function(ASF)和 ASF 曲线的 full width half maximum(FWHM)对去模糊图像进行了 2D 分析。

结果

所提出的方法能够显著恢复原始结构,从而进一步提高图像质量。在所提出的 SV 方法重建的胸部断层合成图像中,椎体分割和相似性方面的去模糊性能最佳。与 FDK 方法相比,所提出的 SV 方法重建的 chest tomosynthesis 图像的 IoU、F-score 和 VIF 值分别提高了 53.5%、28.7%和 63.2%,而 RMSE 值降低了 80.3%。这些定量结果表明,所提出的方法可以有效地恢复椎体和周围软组织。

结论

我们提出了一种用于考虑层析合成系统的空间变化特性的胸部断层合成去模糊技术,用于椎体分割。定量评估的结果表明,所提出的方法的椎体分割性能优于现有的去模糊方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验