Center for Advanced Radiotherapy Technologies and Department of Radiation Oncology, University of California San Diego, La Jolla, CA 92093, USA.
Phys Med Biol. 2011 Sep 7;56(17):5485-502. doi: 10.1088/0031-9155/56/17/003. Epub 2011 Aug 3.
An algorithm capable of mitigating respiratory motion blurring artifacts in cone-beam computed tomography (CBCT) lung tumor images based on the motion of the tumor during the CBCT scan is developed. The tumor motion trajectory and probability density function (PDF) are reconstructed from the acquired CBCT projection images using a recently developed algorithm Lewis et al (2010 Phys. Med. Biol. 55 2505-22). Assuming that the effects of motion blurring can be represented by convolution of the static lung (or tumor) anatomy with the motion PDF, a cost function is defined, consisting of a data fidelity term and a total variation regularization term. Deconvolution is performed through iterative minimization of this cost function. The algorithm was tested on digital respiratory phantom, physical respiratory phantom and patient data. A clear qualitative improvement is evident in the deblurred images as compared to the motion-blurred images for all cases. Line profiles show that the tumor boundaries are more accurately and clearly represented in the deblurred images. The normalized root-mean-squared error between the images used as ground truth and the motion-blurred images are 0.29, 0.12 and 0.30 in the digital phantom, physical phantom and patient data, respectively. Deblurring reduces the corresponding values to 0.13, 0.07 and 0.19. Application of a -700 HU threshold to the digital phantom results in tumor dimension measurements along the superior-inferior axis of 2.8, 1.8 and 1.9 cm in the motion-blurred, ground truth and deblurred images, respectively. Corresponding values for the physical phantom are 3.4, 2.7 and 2.7 cm. A threshold of -500 HU applied to the patient case gives measurements of 3.1, 1.6 and 1.7 cm along the SI axis in the CBCT, 4DCT and deblurred images, respectively. This technique could provide more accurate information about a lung tumor's size and shape on the day of treatment.
开发了一种基于 CBCT 扫描期间肿瘤运动的算法,用于减轻锥形束 CT(CBCT)肺部肿瘤图像中呼吸运动模糊伪影。使用最近开发的算法(Lewis 等人,2010 年,《物理医学与生物学》,第 55 卷,第 2505-22 页)从获得的 CBCT 投影图像中重建肿瘤运动轨迹和概率密度函数(PDF)。假设运动模糊的影响可以表示为静态肺部(或肿瘤)解剖结构与运动 PDF 的卷积,定义了一个成本函数,该函数由数据保真项和全变差正则化项组成。通过迭代最小化这个成本函数来进行反卷积。该算法已在数字呼吸体模、物理呼吸体模和患者数据上进行了测试。与运动模糊图像相比,所有情况下的去模糊图像都明显具有更好的定性改善。线轮廓显示,在去模糊图像中,肿瘤边界被更准确和清晰地表示。作为基准的图像与运动模糊图像之间的归一化均方根误差分别为数字体模中的 0.29、物理体模中的 0.12 和患者数据中的 0.30。去模糊化将相应的值降低到 0.13、0.07 和 0.19。在数字体模中应用-700 HU 阈值,会导致在运动模糊、基准和去模糊图像中沿上下轴测量的肿瘤尺寸分别为 2.8、1.8 和 1.9 cm。对于物理体模,相应的值为 3.4、2.7 和 2.7 cm。在患者病例中应用-500 HU 阈值,会导致在 CBCT、4DCT 和去模糊图像中沿 SI 轴测量的尺寸分别为 3.1、1.6 和 1.7 cm。该技术可以在治疗当天提供有关肺部肿瘤大小和形状的更准确信息。