Suppr超能文献

高浓度超顺磁性氧化铁的高灵敏度、低场 fMRI 方法。

High-Sensitivity, Low-Field F-MRI Approach Using High Manganese Ferrite Concentrations.

机构信息

National Center for Nanoscience and Technology, Beijing 100190, China.

School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Anal Chem. 2023 Jul 18;95(28):10572-10579. doi: 10.1021/acs.analchem.3c00379. Epub 2023 Jul 4.

Abstract

Fluorine-19 (F) MRI (F-MRI) is a promising method for quantifying biomedical research and clinical applications without background interference. Nevertheless, dependency on high-field MRI systems limits the applicability of F-MRI. Low-field MRI systems are more common than high-field MRI systems. Hence, developing F-MRI at low-field MRI devices can promote the F-MRI translation in medical diagnosis. The detection sensitivity of fluorine agents is critical in F-MRI. Reduction of the F spin-lattice relaxation time () enables an improved detection sensitivity while requiring ultrashort echo time (UTE) imaging methods to reduce the negative spin-spin relaxation () decay effect. However, conventional UTE sequences require hardware with high performance. Herein, we introduce the -space scaling imaging (KSSI) MRI sequence that accomplishes sampling -space with variable scales to implement hardware-friendly UTE F-MRI compatible with low-field MRI systems. We implemented experiments with swine bone, a perfluorooctyl bromide (PFOB) phantom, and one tumor-bearing mouse on two self-customized low-field MRI systems. The swine bone imaging validated the ultrashort TE of KSSI. Under high concentrations of manganese ferrite, a high signal-to-noise ratio was shown in the imaging of a fluorine atom concentration of 658 mM, which indicated high-sensitivity detection of KSSI. Moreover, the KSSI sequence exhibited a 7.1 times signal-to-noise ratio of spin echo sequence on the PFOB phantom imaging with a fluorine atom concentration of 3.29 M. Additionally, the various concentrations of the PFOB phantom imaging revealed quantifiable capacity. Finally, the H/F imaging was implemented with KSSI on one tumor-bearing mouse. This method provides the potential for clinical translation of fluorine probes at low-field MRI systems.

摘要

氟-19(F)磁共振成像(F-MRI)是一种有前途的方法,可用于量化生物医学研究和临床应用,而不会受到背景干扰。然而,对高场 MRI 系统的依赖限制了 F-MRI 的适用性。低场 MRI 系统比高场 MRI 系统更为常见。因此,在低场 MRI 设备上开发 F-MRI 可以促进 F-MRI 在医学诊断中的转化。氟试剂的检测灵敏度在 F-MRI 中至关重要。减少 F 自旋晶格弛豫时间(T1)可以提高检测灵敏度,同时需要超短回波时间(UTE)成像方法来减少负的自旋-自旋弛豫(T2)衰减效应。然而,传统的 UTE 序列需要具有高性能的硬件。在此,我们介绍了 -空间缩放成像(KSSI)MRI 序列,该序列通过可变比例对 -空间进行采样,以实现硬件友好的 UTE F-MRI,与低场 MRI 系统兼容。我们在两个自行定制的低场 MRI 系统上对猪骨、全氟辛基溴(PFOB)造影剂和一只荷瘤小鼠进行了实验。猪骨成像验证了 KSSI 的超短 TE。在高浓度的锰铁氧体下,在氟原子浓度为 658mM 的情况下,显示出高信噪比,表明 KSSI 具有高灵敏度检测能力。此外,在氟原子浓度为 3.29M 的 PFOB 造影剂成像中,KSSI 序列的信噪比是自旋回波序列的 7.1 倍。此外,PFOB 造影剂的各种浓度成像显示出可量化的能力。最后,在一只荷瘤小鼠上进行了 H/F 成像。该方法为低场 MRI 系统中氟探针的临床转化提供了潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验