National Center for Nanoscience and Technology, Beijing 100190, China.
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
Anal Chem. 2023 Jul 18;95(28):10572-10579. doi: 10.1021/acs.analchem.3c00379. Epub 2023 Jul 4.
Fluorine-19 (F) MRI (F-MRI) is a promising method for quantifying biomedical research and clinical applications without background interference. Nevertheless, dependency on high-field MRI systems limits the applicability of F-MRI. Low-field MRI systems are more common than high-field MRI systems. Hence, developing F-MRI at low-field MRI devices can promote the F-MRI translation in medical diagnosis. The detection sensitivity of fluorine agents is critical in F-MRI. Reduction of the F spin-lattice relaxation time () enables an improved detection sensitivity while requiring ultrashort echo time (UTE) imaging methods to reduce the negative spin-spin relaxation () decay effect. However, conventional UTE sequences require hardware with high performance. Herein, we introduce the -space scaling imaging (KSSI) MRI sequence that accomplishes sampling -space with variable scales to implement hardware-friendly UTE F-MRI compatible with low-field MRI systems. We implemented experiments with swine bone, a perfluorooctyl bromide (PFOB) phantom, and one tumor-bearing mouse on two self-customized low-field MRI systems. The swine bone imaging validated the ultrashort TE of KSSI. Under high concentrations of manganese ferrite, a high signal-to-noise ratio was shown in the imaging of a fluorine atom concentration of 658 mM, which indicated high-sensitivity detection of KSSI. Moreover, the KSSI sequence exhibited a 7.1 times signal-to-noise ratio of spin echo sequence on the PFOB phantom imaging with a fluorine atom concentration of 3.29 M. Additionally, the various concentrations of the PFOB phantom imaging revealed quantifiable capacity. Finally, the H/F imaging was implemented with KSSI on one tumor-bearing mouse. This method provides the potential for clinical translation of fluorine probes at low-field MRI systems.
氟-19(F)磁共振成像(F-MRI)是一种有前途的方法,可用于量化生物医学研究和临床应用,而不会受到背景干扰。然而,对高场 MRI 系统的依赖限制了 F-MRI 的适用性。低场 MRI 系统比高场 MRI 系统更为常见。因此,在低场 MRI 设备上开发 F-MRI 可以促进 F-MRI 在医学诊断中的转化。氟试剂的检测灵敏度在 F-MRI 中至关重要。减少 F 自旋晶格弛豫时间(T1)可以提高检测灵敏度,同时需要超短回波时间(UTE)成像方法来减少负的自旋-自旋弛豫(T2)衰减效应。然而,传统的 UTE 序列需要具有高性能的硬件。在此,我们介绍了 -空间缩放成像(KSSI)MRI 序列,该序列通过可变比例对 -空间进行采样,以实现硬件友好的 UTE F-MRI,与低场 MRI 系统兼容。我们在两个自行定制的低场 MRI 系统上对猪骨、全氟辛基溴(PFOB)造影剂和一只荷瘤小鼠进行了实验。猪骨成像验证了 KSSI 的超短 TE。在高浓度的锰铁氧体下,在氟原子浓度为 658mM 的情况下,显示出高信噪比,表明 KSSI 具有高灵敏度检测能力。此外,在氟原子浓度为 3.29M 的 PFOB 造影剂成像中,KSSI 序列的信噪比是自旋回波序列的 7.1 倍。此外,PFOB 造影剂的各种浓度成像显示出可量化的能力。最后,在一只荷瘤小鼠上进行了 H/F 成像。该方法为低场 MRI 系统中氟探针的临床转化提供了潜力。