Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany.
J Chem Phys. 2023 Jul 7;159(1). doi: 10.1063/5.0152126.
Linear-response time-dependent density functional theory (LR-TDDFT) simulations of disordered extended systems require averaging over different snapshots of ion configurations to minimize finite size effects due to the snapshot-dependence of the electronic density response function and related properties. We present a consistent scheme for the computation of the macroscopic Kohn-Sham (KS) density response function connecting an average over snapshot values of charge density perturbations to the averaged values of KS potential variations. This allows us to formulate the LR-TDDFT within the adiabatic (static) approximation for the exchange-correlation (XC) kernel for disordered systems, where the static XC kernel is computed using the direct perturbation method [Moldabekov et al., J. Chem. Theory Comput. 19, 1286 (2023)]. The presented approach allows one to compute the macroscopic dynamic density response function as well as the dielectric function with a static XC kernel generated for any available XC functional. The application of the developed workflow is demonstrated for the example of warm dense hydrogen. The presented approach is applicable for various types of extended disordered systems, such as warm dense matter, liquid metals, and dense plasmas.
线性响应含时密度泛函理论(LR-TDDFT)模拟无序扩展系统需要对离子构型的不同快照进行平均,以最小化由于电子密度响应函数和相关性质的快照依赖性而导致的有限尺寸效应。我们提出了一种用于计算宏观 Kohn-Sham(KS)密度响应函数的一致方案,该方案将电荷密度扰动的快照值平均值与 KS 势能变化的平均值相关联。这允许我们在交换相关(XC)核的绝热(静态)近似下为无序系统制定 LR-TDDFT,其中静态 XC 核使用直接微扰法计算[Moldabekov 等人,J. Chem. Theory Comput. 19, 1286(2023)]。所提出的方法允许计算宏观动态密度响应函数以及介电函数,其静态 XC 核是为任何可用的 XC 函数生成的。所开发的工作流程的应用以温暖致密氢的例子进行了演示。所提出的方法适用于各种类型的扩展无序系统,例如温暖致密物质、液态金属和致密等离子体。