Suppr超能文献

水下环境中的可控粘附行为。

Controllable adhesion behavior in underwater environments.

作者信息

Wu Hongyue, Zhang Bolun, Liu Xiaochen, Liu Yuzhou, Cui Jing, Chu Zhongyi

机构信息

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China.

School of Mechanical Engineering and Applied Electronics, Beijing University of Technology, Beijing, 100021, China.

出版信息

Soft Matter. 2023 Aug 30;19(34):6468-6479. doi: 10.1039/d3sm00538k.

Abstract

Microstructure adhesive pads can effectively manipulate objects in underwater environments. Current adhesive pads can achieve adhesion and separation with rigid substrates underwater; however, challenges remain in the control of adhesion and detachment of flexible materials. Additionally, underwater object manipulation necessitates considerable pre-pressure and is sensitive to water temperature fluctuations, potentially causing object damage and complicating adhesion and detachment processes. Thus, we present a novel, controllable adhesive pad inspired by the functional attributes of microwedge adhesive pads, combined with a mussel-inspired copolymer (MAPMC). In the context of underwater applications for flexible materials, the use of a microstructure adhesion pad with microwedge characteristics (MAPMCs) is a proficient approach to adhesion and detachment operations. This innovative method relies on the precise manipulation of the microwedge structure's collapse and recovery during its operation, which serves as the foundation for its efficacy in such environments. MAPMCs exhibit self-recovering elasticity, water flow interaction, and tunable underwater adhesion and detachment. Numerical simulations elucidate the synergistic effects of MAPMCs, highlighting the advantages of the microwedge structure for controllable, non-damaging adhesion and separation processes. The integration of MAPMCs into a gripping mechanism allows for the handling of diverse objects in underwater environments. Furthermore, by merging MAPMCs and a gripper within a linked system, our approach enables automatic, non-damaging adhesion, manipulation, and release of a soft jellyfish model. The experimental results indicate the potential applicability of MACMPs in underwater operations.

摘要

微观结构粘合垫能够在水下环境中有效地操纵物体。目前的粘合垫可以在水下与刚性基板实现粘附和分离;然而,在控制柔性材料的粘附和脱离方面仍然存在挑战。此外,水下物体操纵需要相当大的预压力,并且对水温波动敏感,这可能会导致物体损坏,并使粘附和脱离过程复杂化。因此,我们提出了一种受微楔粘合垫功能特性启发的新型可控粘合垫,它结合了贻贝启发的共聚物(MAPMC)。在水下柔性材料应用的背景下,使用具有微楔特性的微观结构粘合垫(MAPMCs)是进行粘附和脱离操作的有效方法。这种创新方法依赖于微楔结构在操作过程中坍塌和恢复的精确控制,这是其在这种环境中发挥功效的基础。MAPMCs具有自恢复弹性、水流相互作用以及可调节的水下粘附和脱离能力。数值模拟阐明了MAPMCs的协同效应,突出了微楔结构在可控、无损伤的粘附和分离过程中的优势。将MAPMCs集成到抓取机构中,可以在水下环境中处理各种物体。此外,通过将MAPMCs和抓取器合并到一个链接系统中,我们的方法能够对软水母模型进行自动、无损伤的粘附、操纵和释放。实验结果表明了MACMPs在水下操作中的潜在适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验