CBMA - Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal.
Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon, Portugal.
Appl Microbiol Biotechnol. 2023 Aug;107(16):5209-5224. doi: 10.1007/s00253-023-12650-w. Epub 2023 Jul 5.
The biocatalysis of β-myrcene into value-added compounds, with enhanced organoleptic/therapeutic properties, may be performed by resorting to specialized enzymatic machinery of β-myrcene-biotransforming bacteria. Few β-myrcene-biotransforming bacteria have been studied, limiting the diversity of genetic modules/catabolic pathways available for biotechnological research. In our model Pseudomonas sp. strain M1, the β-myrcene catabolic core-code was identified in a 28-kb genomic island (GI). The lack of close homologs of this β-myrcene-associated genetic code prompted a bioprospection of cork oak and eucalyptus rhizospheres, from 4 geographic locations in Portugal, to evaluate the environmental diversity and dissemination of the β-myrcene-biotransforming genetic trait (Myr). Soil microbiomes were enriched in β-myrcene-supplemented cultures, from which β-myrcene-biotransforming bacteria were isolated, belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia classes. From a panel of representative Myr isolates that included 7 bacterial genera, the production of β-myrcene derivatives previously reported in strain M1 was detected in Pseudomonas spp., Cupriavidus sp., Sphingobacterium sp., and Variovorax sp. A comparative genomics analysis against the genome of strain M1 found the M1-GI code in 11 new Pseudomonas genomes. Full nucleotide conservation of the β-myrcene core-code was observed throughout a 76-kb locus in strain M1 and all 11 Pseudomonas spp., resembling the structure of an integrative and conjugative element (ICE), despite being isolated from different niches. Furthermore, the characterization of isolates not harboring the Myr-related 76-kb locus suggested that they may biotransform β-myrcene via alternative catabolic loci, being thereby a novel source of enzymes and biomolecule catalogue for biotechnological exploitation. KEY POINTS: • The isolation of 150 Myr bacteria hints the ubiquity of such trait in the rhizosphere. • The Myr trait is spread across different bacterial taxonomic classes. • The core-code for the Myr trait was detected in a novel ICE, only found in Pseudomonas spp.
β-月桂烯生物催化转化为具有增强的感官/治疗特性的增值化合物,可以通过利用β-月桂烯转化细菌的专门酶促机制来实现。已经研究了少数几种β-月桂烯转化细菌,这限制了可用于生物技术研究的遗传模块/代谢途径的多样性。在我们的模型假单胞菌 M1 菌株中,在 28kb 基因组岛(GI)中鉴定出β-月桂烯代谢核心编码。由于缺乏与这种与β-月桂烯相关的遗传代码的密切同源物,因此我们对来自葡萄牙 4 个地理位置的栓皮栎和桉树根际进行了生物勘探,以评估β-月桂烯转化遗传特征(Myr)的环境多样性和传播。在添加β-月桂烯的培养物中富集了土壤微生物组,从这些培养物中分离出属于α变形菌、β变形菌、γ变形菌和鞘脂单胞菌的β-月桂烯转化细菌。在一组包括 7 个细菌属的代表性 Myr 分离株中,检测到了以前在 M1 菌株中报道的β-月桂烯衍生物的产生,这些分离株包括假单胞菌属、铜绿假单胞菌属、鞘氨醇单胞菌属和沃氏菌属。与 M1 菌株的基因组进行比较基因组学分析发现,在 11 个新的假单胞菌基因组中发现了 M1-GI 代码。在 M1 菌株和所有 11 个假单胞菌属中观察到β-月桂烯核心编码的完全核苷酸保守性,类似于整合和共轭元件(ICE)的结构,尽管它们是从不同的生境中分离出来的。此外,对不携带 Myr 相关 76kb 基因座的分离株的特征分析表明,它们可能通过替代代谢基因座转化β-月桂烯,从而成为酶和生物分子目录的新技术来源,可用于生物技术开发。要点:• 分离出的 150 株 Myr 细菌暗示了这种特性在根际中的普遍性。• Myr 特性分布在不同的细菌分类群中。• 在仅在假单胞菌属中发现的新型 ICE 中检测到了 Myr 特性的核心代码。