Suppr超能文献

探讨线粒体在糖尿病心肌病中的作用的新见解:分子机制和潜在治疗方法。

Novel insights into the role of mitochondria in diabetic cardiomyopathy: molecular mechanisms and potential treatments.

机构信息

The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.

Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.

出版信息

Cell Stress Chaperones. 2023 Nov;28(6):641-655. doi: 10.1007/s12192-023-01361-w. Epub 2023 Jul 5.

Abstract

Diabetic cardiomyopathy describes decreased myocardial function in diabetic patients in the absence of other heart diseases such as myocardial ischemia and hypertension. Recent studies have defined numerous molecular interactions and signaling events that may account for deleterious changes in mitochondrial dynamics and functions influenced by hyperglycemic stress. A metabolic switch from glucose to fatty acid oxidation to fuel ATP synthesis, mitochondrial oxidative injury resulting from increased mitochondrial ROS production and decreased antioxidant capacity, enhanced mitochondrial fission and defective mitochondrial fusion, impaired mitophagy, and blunted mitochondrial biogenesis are major signatures of mitochondrial pathologies during diabetic cardiomyopathy. This review describes the molecular alterations underlying mitochondrial abnormalities associated with hyperglycemia and discusses their influence on cardiomyocyte viability and function. Based on basic research findings and clinical evidence, diabetic treatment standards and their impact on mitochondrial function, as well as mitochondria-targeted therapies of potential benefit for diabetic cardiomyopathy patients, are also summarized.

摘要

糖尿病性心肌病是指在没有其他心脏病如心肌缺血和高血压的情况下,糖尿病患者的心肌功能下降。最近的研究已经确定了许多分子相互作用和信号事件,这些事件可能导致高血糖应激影响线粒体动力学和功能的有害变化。从葡萄糖到脂肪酸氧化的代谢转换来为 ATP 合成提供燃料,由于线粒体 ROS 产生增加和抗氧化能力降低而导致的线粒体氧化损伤,增强的线粒体裂变和有缺陷的线粒体融合,受损的线粒体自噬和迟钝的线粒体生物发生是糖尿病性心肌病中线粒体病理学的主要特征。本综述描述了与高血糖相关的线粒体异常的分子改变,并讨论了它们对心肌细胞活力和功能的影响。基于基础研究结果和临床证据,还总结了糖尿病治疗标准及其对线粒体功能的影响,以及针对糖尿病性心肌病患者可能有益的线粒体靶向治疗。

相似文献

1
Novel insights into the role of mitochondria in diabetic cardiomyopathy: molecular mechanisms and potential treatments.
Cell Stress Chaperones. 2023 Nov;28(6):641-655. doi: 10.1007/s12192-023-01361-w. Epub 2023 Jul 5.
2
Mitochondrial quality control mechanisms as molecular targets in diabetic heart.
Metabolism. 2022 Dec;137:155313. doi: 10.1016/j.metabol.2022.155313. Epub 2022 Sep 17.
3
Mitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction.
Cardiovasc Diabetol. 2024 Jul 18;23(1):261. doi: 10.1186/s12933-024-02357-1.
4
Pgam5 aggravates hyperglycemia-induced myocardial dysfunction through disrupting Phb2-dependent mitochondrial dynamics.
Int J Med Sci. 2024 May 5;21(7):1194-1203. doi: 10.7150/ijms.92872. eCollection 2024.
6
The Role of Mitochondrial Abnormalities in Diabetic Cardiomyopathy.
Int J Mol Sci. 2022 Jul 16;23(14):7863. doi: 10.3390/ijms23147863.
7
Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy.
Biochim Biophys Acta. 2015 May;1853(5):1113-8. doi: 10.1016/j.bbamcr.2015.02.005. Epub 2015 Feb 14.
8
Mitochondrial quality control in diabetic cardiomyopathy: from molecular mechanisms to therapeutic strategies.
Int J Biol Sci. 2022 Aug 15;18(14):5276-5290. doi: 10.7150/ijbs.75402. eCollection 2022.
9
Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs.
Biomed Pharmacother. 2023 Dec;168:115669. doi: 10.1016/j.biopha.2023.115669. Epub 2023 Oct 9.
10
Akap1 deficiency exacerbates diabetic cardiomyopathy in mice by NDUFS1-mediated mitochondrial dysfunction and apoptosis.
Diabetologia. 2020 May;63(5):1072-1087. doi: 10.1007/s00125-020-05103-w. Epub 2020 Feb 19.

引用本文的文献

2
Interaction between mitochondrial oxidative stress and myocardial fibrosis in the context of diabetes.
Front Endocrinol (Lausanne). 2025 Jun 5;16:1596436. doi: 10.3389/fendo.2025.1596436. eCollection 2025.
5
Pgam5 aggravates hyperglycemia-induced myocardial dysfunction through disrupting Phb2-dependent mitochondrial dynamics.
Int J Med Sci. 2024 May 5;21(7):1194-1203. doi: 10.7150/ijms.92872. eCollection 2024.
6
Dihydromyricetin regulates RIPK3-CaMKII to prevent necroptosis in high glucose-stimulated cardiomyocytes.
Heliyon. 2024 Mar 29;10(7):e28921. doi: 10.1016/j.heliyon.2024.e28921. eCollection 2024 Apr 15.
7
Mitophagy for cardioprotection.
Basic Res Cardiol. 2023 Oct 5;118(1):42. doi: 10.1007/s00395-023-01009-x.

本文引用的文献

1
The role of histone deacetylases in cardiac energy metabolism in heart diseases.
Metabolism. 2023 May;142:155532. doi: 10.1016/j.metabol.2023.155532. Epub 2023 Mar 6.
2
CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes.
Signal Transduct Target Ther. 2023 Mar 8;8(1):99. doi: 10.1038/s41392-022-01306-2.
3
The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications.
Front Endocrinol (Lausanne). 2023 Feb 7;14:1112363. doi: 10.3389/fendo.2023.1112363. eCollection 2023.
7
Mitochondrial Quality Control Mechanisms during Diabetic Cardiomyopathy.
JMA J. 2022 Oct 17;5(4):407-415. doi: 10.31662/jmaj.2022-0155. Epub 2022 Sep 30.
8
Bariatric surgery for diabetic comorbidities: A focus on hepatic, cardiac and renal fibrosis.
Front Pharmacol. 2022 Oct 21;13:1016635. doi: 10.3389/fphar.2022.1016635. eCollection 2022.
10
DNA-PKcs promotes sepsis-induced multiple organ failure by triggering mitochondrial dysfunction.
J Adv Res. 2022 Nov;41:39-48. doi: 10.1016/j.jare.2022.01.014. Epub 2022 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验