Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
J Adv Res. 2022 Nov;41:39-48. doi: 10.1016/j.jare.2022.01.014. Epub 2022 Jan 31.
Multiple organ failure is the commonest cause of death in septic patients.
This study was undertaken in an attempt to elucidate the functional importance of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) on mitochondrial dysfunction associated with the development and progression of sepsis-related multiple organ dysfunction syndrome (MODS).
Cardiomyocyte-specific DNA-PKcs knockout (DNA-PKcs) mice, liver-specific DNA-PKcs knockout (DNA-PKcs) mice, and kidney tubular cell-specific DNA-PKcs knockout (DNA-PKcs) mice were used to generate an LPS-induced sepsis model. Echocardiography, serum biochemistry, and tissue microscopy were used to analyze organ damage and morphological changes induced by sepsis. Mitochondrial function and dynamics were determined by qPCR, western blotting, ELISA, and mt-Keima and immunofluorescence assays following siRNA-mediated DNA-PKCs knockdown in cardiomyocytes, hepatocytes, and kidney tubular cells.
DNA-PKcs deletion attenuated sepsis-mediated myocardial damage through improving mitochondrial metabolism. Loss of DNA-PKcs protected the liver against sepsis through inhibition of mitochondrial oxidative damage and apoptosis. DNA-PKcs deficiency sustained kidney function upon LPS stress through normalization of mitochondrial fission/fusion events, mitophagy, and biogenesis.
We conclude that strategies targeting DNA-PKcs expression or activity may be valuable therapeutic options to prevent or reduce mitochondrial dysfunction and organ damage associated with sepsis-induced MODS.
多器官衰竭是脓毒症患者死亡的最常见原因。
本研究旨在阐明 DNA 依赖性蛋白激酶催化亚基(DNA-PKcs)在与脓毒症相关的多器官功能障碍综合征(MODS)发展和进展相关的线粒体功能障碍中的功能重要性。
使用心肌细胞特异性 DNA-PKcs 敲除(DNA-PKcs)小鼠、肝特异性 DNA-PKcs 敲除(DNA-PKcs)小鼠和肾小管细胞特异性 DNA-PKcs 敲除(DNA-PKcs)小鼠生成 LPS 诱导的脓毒症模型。使用超声心动图、血清生化和组织显微镜分析脓毒症引起的器官损伤和形态变化。通过 qPCR、western blot、ELISA 和 mt-Keima 和免疫荧光测定,在心肌细胞、肝细胞和肾小管细胞中用 siRNA 介导的 DNA-PKCs 敲低后,测定线粒体功能和动力学。
DNA-PKcs 缺失通过改善线粒体代谢减轻脓毒症介导的心肌损伤。DNA-PKcs 的缺失通过抑制线粒体氧化损伤和凋亡来保护肝脏免受脓毒症的影响。在 LPS 应激下,DNA-PKcs 缺乏通过正常化线粒体分裂/融合事件、线粒体自噬和生物发生来维持肾功能。
我们的结论是,靶向 DNA-PKcs 表达或活性的策略可能是预防或减少与脓毒症诱导的 MODS 相关的线粒体功能障碍和器官损伤的有价值的治疗选择。