文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用银纳米粒子增强荧光改善溶酶体动力学的成像和保存。

Improved imaging and preservation of lysosome dynamics using silver nanoparticle-enhanced fluorescence.

机构信息

Molecular Science Graduate Program, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3.

Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada, M5B 2K3.

出版信息

Mol Biol Cell. 2023 Sep 1;34(10):ar96. doi: 10.1091/mbc.E22-06-0200. Epub 2023 Jul 5.


DOI:10.1091/mbc.E22-06-0200
PMID:37405751
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10551705/
Abstract

The dynamics of living cells can be studied by live-cell fluorescence microscopy. However, this requires the use of excessive light energy to obtain good signal-to-noise ratio, which can then photobleach fluorochromes, and more worrisomely, lead to phototoxicity. Upon light excitation, noble metal nanoparticles such as silver nanoparticles (AgNPs) generate plasmons, which can then amplify excitation in direct proximity of the nanoparticle's surface and couple to the oscillating dipole of nearby radiating fluorophores, modifying their rate of emission and thus, enhancing their fluorescence. Here, we show that AgNPs fed to cells to accumulate within lysosomes enhanced the fluorescence of lysosome-targeted Alexa488-conjugated dextran, BODIPY-cholesterol, and DQ-BSA. Moreover, AgNP increased the fluorescence of GFP fused to the cytosolic tail of LAMP1, showing that metal enhanced fluorescence can occur across the lysosomal membrane. The inclusion of AgNPs in lysosomes did not disturb lysosomal properties such as lysosomal pH, degradative capacity, autophagy and autophagic flux, and membrane integrity, though AgNP seemed to increase basal lysosome tubulation. Importantly, by using AgNP, we could track lysosome motility with reduced laser power without damaging and altering lysosome dynamics. Overall, AgNP-enhanced fluorescence may be a useful tool to study the dynamics of the endo-lysosomal pathway while minimizing phototoxicity.

摘要

活细胞的动力学可以通过活细胞荧光显微镜来研究。然而,这需要使用过多的光能来获得良好的信噪比,这可能会导致荧光染料光漂白,更令人担忧的是,导致光毒性。在光激发下,贵金属纳米粒子如银纳米粒子(AgNPs)会产生等离子体,从而可以在纳米粒子表面的直接邻近处放大激发,并与附近辐射荧光团的振荡偶极子耦合,改变它们的发射速率,从而增强它们的荧光。在这里,我们表明,递送到细胞内以在溶酶体中积累的 AgNPs 增强了溶酶体靶向 Alexa488 缀合的葡聚糖、BODIPY-胆固醇和 DQ-BSA 的荧光。此外,AgNP 增加了 GFP 与溶酶体膜蛋白 1(LAMP1)胞质尾部融合的荧光,表明金属增强的荧光可以跨越溶酶体膜发生。AgNP 包含在溶酶体中不会干扰溶酶体的性质,如溶酶体 pH、降解能力、自噬和自噬通量以及膜完整性,尽管 AgNP 似乎增加了基础溶酶体小管化。重要的是,通过使用 AgNP,我们可以在不损坏和改变溶酶体动力学的情况下,用较低的激光功率跟踪溶酶体的运动。总的来说,AgNP 增强的荧光可能是研究内体溶酶体途径动力学的有用工具,同时最小化光毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/9f1e694023ab/mbc-34-ar96-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/c8e3dc14bb6c/mbc-34-ar96-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/49b1050c741d/mbc-34-ar96-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/99f87fef851f/mbc-34-ar96-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/f287293ff96b/mbc-34-ar96-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/3c9a9b572672/mbc-34-ar96-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/c759ffeade84/mbc-34-ar96-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/b7a993312739/mbc-34-ar96-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/e8dd9944e4fa/mbc-34-ar96-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/d9d473f30e98/mbc-34-ar96-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/9f1e694023ab/mbc-34-ar96-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/c8e3dc14bb6c/mbc-34-ar96-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/49b1050c741d/mbc-34-ar96-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/99f87fef851f/mbc-34-ar96-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/f287293ff96b/mbc-34-ar96-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/3c9a9b572672/mbc-34-ar96-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/c759ffeade84/mbc-34-ar96-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/b7a993312739/mbc-34-ar96-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/e8dd9944e4fa/mbc-34-ar96-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/d9d473f30e98/mbc-34-ar96-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c68/10551705/9f1e694023ab/mbc-34-ar96-g010.jpg

相似文献

[1]
Improved imaging and preservation of lysosome dynamics using silver nanoparticle-enhanced fluorescence.

Mol Biol Cell. 2023-9-1

[2]
Functional Autophagic Flux Regulates AgNP Uptake And The Internalized Nanoparticles Determine Tumor Cell Fate By Temporally Regulating Flux.

Int J Nanomedicine. 2019-11-20

[3]
Silver nanoparticles induce lysosomal-autophagic defects and decreased expression of transcription factor EB in A549 human lung adenocarcinoma cells.

Toxicol In Vitro. 2017-10-5

[4]
Silver nanoparticle-induced impaired autophagic flux and lysosomal dysfunction contribute to the microglia inflammation polarization.

Food Chem Toxicol. 2022-12

[5]
Detection and Imaging of Hydrogen Sulfide in Lysosomes of Living Cells with Activatable Fluorescent Quantum Dots.

ACS Appl Mater Interfaces. 2018-12-7

[6]
Silver Nanoparticle-Induced Autophagic-Lysosomal Disruption and NLRP3-Inflammasome Activation in HepG2 Cells Is Size-Dependent.

Toxicol Sci. 2016-4

[7]
Mitophagy-lysosomal pathway is involved in silver nanoparticle-induced apoptosis in A549 cells.

Ecotoxicol Environ Saf. 2021-1-15

[8]
The lysosome-mitochondrion crosstalk engaged in silver nanoparticles-disturbed mitochondrial homeostasis.

Sci Total Environ. 2023-9-1

[9]
Small RNAs as a New Platform for Tuning the Biosynthesis of Silver Nanoparticles for Enhanced Material and Functional Properties.

ACS Appl Mater Interfaces. 2021-8-11

[10]
Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol.

Nanomedicine. 2015-4

本文引用的文献

[1]
Optical writing and single molecule reading of photoactivatable and silver nanoparticle-enhanced fluorescence.

Nanoscale Adv. 2020-2-28

[2]
RUFY3 links Arl8b and JIP4-Dynein complex to regulate lysosome size and positioning.

Nat Commun. 2022-3-21

[3]
RUFY3 and RUFY4 are ARL8 effectors that promote coupling of endolysosomes to dynein-dynactin.

Nat Commun. 2022-3-21

[4]
Reactive oxygen species prevent lysosome coalescence during PIKfyve inhibition.

PLoS One. 2021

[5]
Phagosome maturation in macrophages: Eat, digest, adapt, and repeat.

Adv Biol Regul. 2021-12

[6]
Super-Resolution Microscopy: Shedding New Light on Imaging.

Front Chem. 2021-9-14

[7]
Phagosome resolution regenerates lysosomes and maintains the degradative capacity in phagocytes.

J Cell Biol. 2021-9-6

[8]
Spectral Distortions in Metal-Enhanced Fluorescence: Experimental Evidence for Ultra-Fast and Slow Transitions.

J Phys Chem C Nanomater Interfaces. 2020-2-27

[9]
Endosomal microdomains: Formation and function.

Curr Opin Cell Biol. 2020-8

[10]
The Lysosome Signaling Platform: Adapting With the Times.

Front Cell Dev Biol. 2019-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索