文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

功能自噬通量调节 AgNP 的摄取,而被内化的纳米颗粒通过时间调节通量来决定肿瘤细胞的命运。

Functional Autophagic Flux Regulates AgNP Uptake And The Internalized Nanoparticles Determine Tumor Cell Fate By Temporally Regulating Flux.

机构信息

Department of Biological Sciences, Pilani Campus, BITS, Pilani, Rajasthan 333031, India.

Department of Chemistry, Pilani Campus, BITS, Pilani, Rajasthan 333031, India.

出版信息

Int J Nanomedicine. 2019 Nov 20;14:9063-9076. doi: 10.2147/IJN.S222211. eCollection 2019.


DOI:10.2147/IJN.S222211
PMID:31819419
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6875509/
Abstract

BACKGROUND: Silver nanoparticles (AgNPs) are known to induce the conserved, cellular, homeostatic process- autophagy in tumor cells. Previous studies primarily focus on the pro-survival role of autophagy post AgNP exposure in tumor cells, but seldom on its role in AgNP uptake, or on the functional significance of autophagy temporal dynamics. Our study sheds more light on the extensive crosstalk that exists between AgNP and autophagy, which can be critical to the improvement of AgNP-induced therapeutic effects. METHODS: β-cyclodextrin (β-CD) coated AgNPs of two different sizes were synthesized by nucleation method and characterized by transmission electron microscopy. Fluorescence microscopy and flow cytometry were used to probe intracellular uptake of AgNPs. Endocytic mechanism of AgNPs was classically analyzed through use of various endocytosis inhibitors. Autophagy was evaluated by immunoblot and fluorescence microscopy. Additionally, immunoblot was performed to monitor Janus Kinase (JNK) signalling, ubiquitination of proteins, expression of endo-lysosomal and apoptotic markers in correlation to AgNP-induced autophagy. RESULTS: The intra-cellular route of entry for the small NPs (9 nm; ss-AgNPs) was different than the large NPs (19 nm; ls-AgNPs) studied. However, irrespective of their unique route of entry an inhibition of autophagic flux by chloroquine (CQ) reduced uptake of both the AgNPs. In contrary, rapamycin (Rapa), an autophagy inducer enhanced it. Importantly, JNK activation was required for autophagy induction and AgNP uptake. Furthermore, effect of AgNPs on autophagy showed temporal dependency. An enhanced autophagic flux was noted at early time points; however, prolonged exposure resulted in inhibition of flux marked by increase in Rab7, LC3B-II and p62 proteins. Inhibition of flux was associated with lysosomal dysfunction, decreased LAMP1 expression and an increased accumulation of ubiquitinated (Ub) proteins. This resulted in heightened reactive oxygen species (ROS) and consequent cytotoxicity. CONCLUSION: In this study, we observed that a functional autophagic flux aids AgNP uptake, but AgNPs in turn, overtime, inhibits flux and endo-lysosomal function. We provide critical, novel insights into crosstalk between AgNP and autophagy which can be vital to future AgNP-based therapy development.

摘要

背景:已知银纳米粒子(AgNPs)可诱导肿瘤细胞中保守的、细胞内的、动态平衡的自噬过程。先前的研究主要集中在 AgNP 暴露后自噬在肿瘤细胞中的生存作用,但很少关注其在 AgNP 摄取中的作用,或自噬时间动态的功能意义。我们的研究更深入地探讨了 AgNP 与自噬之间存在的广泛相互作用,这对于提高 AgNP 诱导的治疗效果可能至关重要。

方法:通过成核法合成了两种不同大小的β-环糊精(β-CD)包覆的 AgNPs,并通过透射电子显微镜进行了表征。荧光显微镜和流式细胞术用于探测 AgNPs 的细胞内摄取。通过使用各种内吞作用抑制剂,经典地分析了 AgNPs 的内吞作用机制。通过免疫印迹和荧光显微镜评估自噬。此外,还进行了免疫印迹以监测 Janus 激酶(JNK)信号、蛋白质的泛素化、内体-溶酶体和凋亡标志物的表达与 AgNP 诱导的自噬相关联。

结果:小 NPs(9nm;ss-AgNPs)的细胞内进入途径与研究的大 NPs(19nm;ls-AgNPs)不同。然而,无论其独特的进入途径如何,氯喹(CQ)抑制自噬流都会减少两种 AgNPs 的摄取。相反,自噬诱导剂雷帕霉素(Rapa)增强了它。重要的是,JNK 激活是自噬诱导和 AgNP 摄取所必需的。此外,AgNPs 对自噬的作用表现出时间依赖性。在早期时间点观察到增强的自噬流;然而,延长暴露会导致通量抑制,表现为 Rab7、LC3B-II 和 p62 蛋白增加。通量抑制与溶酶体功能障碍、LAMP1 表达减少和泛素化(Ub)蛋白积累增加有关。这导致活性氧(ROS)增加和随之而来的细胞毒性。

结论:在这项研究中,我们观察到功能正常的自噬流有助于 AgNP 的摄取,但 AgNP 反过来又会随着时间的推移抑制通量和内体-溶酶体功能。我们为 AgNP 与自噬之间的相互作用提供了重要的、新颖的见解,这对于未来基于 AgNP 的治疗发展可能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/3f0f28d41757/IJN-14-9063-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/f535d6dc9a5f/IJN-14-9063-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/6af063f21fac/IJN-14-9063-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/84b4c3b2ded4/IJN-14-9063-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/36ef3247bc9e/IJN-14-9063-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/4bfdeaad7584/IJN-14-9063-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/fae546e3e354/IJN-14-9063-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/58b6f8cfb49d/IJN-14-9063-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/b37e338efa60/IJN-14-9063-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/3f0f28d41757/IJN-14-9063-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/f535d6dc9a5f/IJN-14-9063-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/6af063f21fac/IJN-14-9063-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/84b4c3b2ded4/IJN-14-9063-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/36ef3247bc9e/IJN-14-9063-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/4bfdeaad7584/IJN-14-9063-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/fae546e3e354/IJN-14-9063-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/58b6f8cfb49d/IJN-14-9063-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/b37e338efa60/IJN-14-9063-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cded/6875509/3f0f28d41757/IJN-14-9063-g0009.jpg

相似文献

[1]
Functional Autophagic Flux Regulates AgNP Uptake And The Internalized Nanoparticles Determine Tumor Cell Fate By Temporally Regulating Flux.

Int J Nanomedicine. 2019-11-20

[2]
Silver nanoparticles induce lysosomal-autophagic defects and decreased expression of transcription factor EB in A549 human lung adenocarcinoma cells.

Toxicol In Vitro. 2017-10-5

[3]
Silver Nanoparticle-Induced Autophagic-Lysosomal Disruption and NLRP3-Inflammasome Activation in HepG2 Cells Is Size-Dependent.

Toxicol Sci. 2016-4

[4]
Silver nanoparticles induce protective autophagy via Ca/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains.

Nanotoxicology. 2019-2-7

[5]
Silver nanoparticles induced cytotoxicity in HT22 cells through autophagy and apoptosis via PI3K/AKT/mTOR signaling pathway.

Ecotoxicol Environ Saf. 2021-1-15

[6]
Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy.

Nanotoxicology. 2016-10

[7]
Effects of silver nanoparticles on the interactions of neuron- and glia-like cells: Toxicity, uptake mechanisms, and lysosomal tracking.

Environ Toxicol. 2017-6

[8]
Silver Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Pre-Infection Through Suppression of NOX4-Dependent ROS Generation.

Int J Nanomedicine. 2020-5-26

[9]
Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy.

Nanoscale. 2015-10-14

[10]
Improved imaging and preservation of lysosome dynamics using silver nanoparticle-enhanced fluorescence.

Mol Biol Cell. 2023-9-1

引用本文的文献

[1]
Evaluating cell cycle- and autophagy-associated cellular accumulation of lipid-based nanoparticles.

Nat Commun. 2025-7-1

[2]
Nanomedicine Approaches for Autophagy Modulation in Cancer Therapy.

Small Sci. 2025-4-11

[3]
Recombinant Keratin-Chitosan Cryogel Decorated with Gallic Acid-Reduced Silver Nanoparticles for Wound Healing.

Int J Nanomedicine. 2024

[4]
Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response Inhibitors.

Nanomaterials (Basel). 2024-9-27

[5]
Dual Implications of Nanosilver-Induced Autophagy: Nanotoxicity and Anti-Cancer Effects.

Int J Mol Sci. 2023-10-20

[6]
Silver nanoparticle-induced alteration of mitochondrial and ER homeostasis affects human breast cancer cell fate.

Toxicol Rep. 2022-11-1

本文引用的文献

[1]
Autophagy Regulated by Gain of Function Mutant p53 Enhances Proteasomal Inhibitor-Mediated Cell Death through Induction of ROS and ERK in Lung Cancer Cells.

J Oncol. 2019-1-6

[2]
Nanodiamond autophagy inhibitor allosterically improves the arsenical-based therapy of solid tumors.

Nat Commun. 2018-10-19

[3]
Biosynthesized Protein-Capped Silver Nanoparticles Induce ROS-Dependent Proapoptotic Signals and Prosurvival Autophagy in Cancer Cells.

ACS Omega. 2017-4-30

[4]
Cross-talk between microtubules and the linker of nucleoskeleton complex plays a critical role in the adipogenesis of human adipose-derived stem cells.

Stem Cell Res Ther. 2018-5-2

[5]
TGF-β2-induced EMT is dampened by inhibition of autophagy and TNF-α treatment.

Oncotarget. 2018-1-4

[6]
A Distinct Endocytic Mechanism of Functionalized-Silica Nanoparticles in Breast Cancer Stem Cells.

Sci Rep. 2017-11-24

[7]
The dynamic role of autophagy and MAPK signaling in determining cell fate under cisplatin stress in osteosarcoma cells.

PLoS One. 2017-6-9

[8]
Molecular definitions of autophagy and related processes.

EMBO J. 2017-7-3

[9]
Cyclodextrin nanosystems in oral drug delivery: A mini review.

Int J Pharm. 2017-10-15

[10]
Dynasore impairs VEGFR2 signalling in an endocytosis-independent manner.

Sci Rep. 2017-3-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索