Suppr超能文献

基于高聚合子图的面部表情识别。

Facial Expression Recognition on the High Aggregation Subgraphs.

出版信息

IEEE Trans Image Process. 2023;32:3732-3745. doi: 10.1109/TIP.2023.3290520. Epub 2023 Jul 7.

Abstract

With the development of deep learning technology, the performance of facial expression recognition (FER) has been significantly improved. The current main challenge comes from the confusion of facial expressions caused by the highly nonlinear changes of facial expressions. However, the existing FER methods based on Convolutional Neural Networks (CNN) often ignore the underlying relationship between expressions which is crucial to meliorate the performance of recognition for confusable expressions. And the methods based on Graph Convolutional Networks (GCN) can capture the relationship between vertices, but the aggregation degree of subgraphs generated by these methods is low. They are easy to include unconfident neighbors, which increases the learning difficulty of the network. To solve the above problems, this paper proposes a method to recognize facial expressions on the high aggregation subgraphs (HASs) by combing the advantages of CNN extracting features and GCN modeling complex graph patterns. Specifically, we formulate FER as a vertex prediction problem. Considering the importance of high-order neighbors and higher efficiency, we utilize vertex confidence to find high-order neighbors. Then we construct the HASs based on the top embedding features of these high-order neighbors. And we utilize the GCN to perform reasoning and infer the class of vertices for HASs without a large number of overlapping subgraphs. Our method captures the underlying relationship between expressions on the HASs and improves the accuracy and efficiency of FER. Experimental results on both the in-the-lab datasets and the in-the-wild datasets show that our method achieves higher recognition accuracy than several state-of-the-art methods. This highlights the benefit of the underlying relationship between expressions for FER.

摘要

随着深度学习技术的发展,面部表情识别(FER)的性能得到了显著提高。目前的主要挑战来自于面部表情的高度非线性变化所导致的表情混淆。然而,现有的基于卷积神经网络(CNN)的 FER 方法往往忽略了表情之间的潜在关系,这对于改善可混淆表情的识别性能至关重要。而基于图卷积网络(GCN)的方法可以捕捉顶点之间的关系,但这些方法生成的子图的聚合程度较低。它们容易包含不可信的邻居,从而增加了网络的学习难度。为了解决上述问题,本文提出了一种结合 CNN 提取特征和 GCN 建模复杂图模式的优势,在高聚合子图(HASs)上识别面部表情的方法。具体来说,我们将 FER 表述为顶点预测问题。考虑到高阶邻居的重要性和更高的效率,我们利用顶点置信度来找到高阶邻居。然后,我们基于这些高阶邻居的顶级嵌入特征构建 HASs。并且,我们利用 GCN 在没有大量重叠子图的情况下对子图进行推理和推断 HASs 的类别。我们的方法在 HASs 上捕捉到了表情之间的潜在关系,提高了 FER 的准确性和效率。在实验室数据集和野外数据集上的实验结果表明,与几种最先进的方法相比,我们的方法具有更高的识别准确率。这突出了表情之间潜在关系对 FER 的益处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验