Suppr超能文献

基于脑电图的神经精神障碍个体分类:深度学习神经网络的现状与未来方向的系统评价。

EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions.

机构信息

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran.

Control and Intelligent Processing Center of Excellence, Faculty of Electrical and Computer Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran.

出版信息

Comput Methods Programs Biomed. 2023 Oct;240:107683. doi: 10.1016/j.cmpb.2023.107683. Epub 2023 Jun 20.

Abstract

The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.

摘要

近年来,深度学习神经网络在脑电图 (EEG) 分类中的应用得到了快速发展和普及,但从 EEG 信号中自动提取特征仍然是一项具有挑战性的任务。神经精神疾病的分类需要提取神经标记物,以便在 EEG 分类中实现自动化。为此,可以使用许多先进的深度学习算法。在本文中,我们全面回顾了影响使用 EEG 信号通过深度学习神经网络对不同神经精神疾病进行分类的主要因素和参数。我们还分析了用于提高分类性能的 EEG 特征。我们的分析包括 82 篇科学期刊论文,这些论文应用深度神经网络基于 EEG 信号对个体进行分类。我们提取了关于 EEG 数据集和疾病类型、深度神经网络结构、性能和超参数的信息。结果表明,大多数研究都集中在临床分类上,平均准确率为 91.83±7.34,其中卷积神经网络 (CNN) 是最常用的网络架构,静息态 EEG 信号是最常用的数据类型。此外,综述还表明,与其他类型的神经精神疾病相比,抑郁症 (N=18)、阿尔茨海默病 (N=11) 和精神分裂症 (N=11) 的研究更为频繁。我们的综述提供了对深度神经网络在 EEG 分类中的性能的深入了解,并强调了 EEG 特征提取在提高分类准确性方面的重要性。通过确定影响 EEG 分类中深度神经网络性能的主要因素和参数,我们的综述可以为该领域的未来研究提供指导。我们希望我们的研究结果将鼓励进一步探索 EEG 分类的深度学习方法,并为使用 EEG 信号诊断和监测神经精神疾病的更准确和有效的方法的发展做出贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验