Li Yuexiang, Li Shuqi, Meng Luhui, Peng Shaoqin
College of Chemistry and Chemical Engineering, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Nanchang University, Nanchang 330031, PR China.
College of Chemistry and Chemical Engineering, Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Nanchang University, Nanchang 330031, PR China.
J Colloid Interface Sci. 2023 Nov 15;650(Pt A):266-274. doi: 10.1016/j.jcis.2023.06.185. Epub 2023 Jun 27.
Construction of semiconductor heterojunctions which promote the separation and transport of photogenerated carriers is an effective strategy for improving photocatalytic reaction efficiency. Based on the anisotropic electrical conductivity of layered ZnInS (ZIS) photocatalyst, an efficient heterojunction should be constructed along the layer plane of ZIS, that is, a J type heterojunction. However, achieving controllable synthesis of the oriented heterojunction of ZIS faces challenges. Herein, we develop a facile, cost-effective and spatially-selective cation exchange synthesis approach to construct J type ZnInS@CdInS (J-ZIS@CIS) heterojunction using a flower-like hexagonal ZIS as the parent material. The developed synthesis approach can also control crystal structure of the heterojunction component CIS. This work presents a facile and controllable synthesis strategy to construct oriented anisotropic heterojunctions that are otherwise inaccessible. The as-prepared J-ZIS@CIS heterojunction displays a greatly enhanced photocatalytic hydrogen evolution activity with a rate of 183 μmol h, 2.77 times higher than that of pristine ZIS. Furthermore, the possible photocatalytic reaction mechanism is presented for the heterojunction.
构建能够促进光生载流子分离和传输的半导体异质结是提高光催化反应效率的有效策略。基于层状ZnInS(ZIS)光催化剂的各向异性电导率,应沿ZIS的层平面构建高效异质结,即J型异质结。然而,实现ZIS定向异质结的可控合成面临挑战。在此,我们开发了一种简便、经济高效且具有空间选择性的阳离子交换合成方法,以花状六方ZIS为母体材料构建J型ZnInS@CdInS(J-ZIS@CIS)异质结。所开发的合成方法还可以控制异质结组分CIS的晶体结构。这项工作提出了一种简便且可控的合成策略,用于构建难以获得的定向各向异性异质结。所制备的J-ZIS@CIS异质结表现出大大增强的光催化析氢活性,速率为183 μmol h,比原始ZIS高2.77倍。此外,还给出了该异质结可能的光催化反应机理。