Suppr超能文献

实现用于时空微生物单细胞分析的氧气控制微流控培养。

Enabling oxygen-controlled microfluidic cultures for spatiotemporal microbial single-cell analysis.

作者信息

Kasahara Keitaro, Leygeber Markus, Seiffarth Johannes, Ruzaeva Karina, Drepper Thomas, Nöh Katharina, Kohlheyer Dietrich

机构信息

IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany.

Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany.

出版信息

Front Microbiol. 2023 Jun 20;14:1198170. doi: 10.3389/fmicb.2023.1198170. eCollection 2023.

Abstract

Microfluidic cultivation devices that facilitate O control enable unique studies of the complex interplay between environmental O availability and microbial physiology at the single-cell level. Therefore, microbial single-cell analysis based on time-lapse microscopy is typically used to resolve microbial behavior at the single-cell level with spatiotemporal resolution. Time-lapse imaging then provides large image-data stacks that can be efficiently analyzed by deep learning analysis techniques, providing new insights into microbiology. This knowledge gain justifies the additional and often laborious microfluidic experiments. Obviously, the integration of on-chip O measurement and control during the already complex microfluidic cultivation, and the development of image analysis tools, can be a challenging endeavor. A comprehensive experimental approach to allow spatiotemporal single-cell analysis of living microorganisms under controlled O availability is presented here. To this end, a gas-permeable polydimethylsiloxane microfluidic cultivation chip and a low-cost 3D-printed mini-incubator were successfully used to control O availability inside microfluidic growth chambers during time-lapse microscopy. Dissolved O was monitored by imaging the fluorescence lifetime of the O-sensitive dye RTDP using FLIM microscopy. The acquired image-data stacks from biological experiments containing phase contrast and fluorescence intensity data were analyzed using in-house developed and open-source image-analysis tools. The resulting oxygen concentration could be dynamically controlled between 0% and 100%. The system was experimentally tested by culturing and analyzing an strain expressing green fluorescent protein as an indirect intracellular oxygen indicator. The presented system allows for innovative microbiological research on microorganisms and microbial ecology with single-cell resolution.

摘要

能够实现氧气控制的微流控培养装置,能够在单细胞水平上对环境中氧气可用性与微生物生理学之间的复杂相互作用进行独特的研究。因此,基于延时显微镜的微生物单细胞分析通常用于在单细胞水平上以时空分辨率解析微生物行为。延时成像随后提供了大量的图像数据堆栈,这些数据堆栈可以通过深度学习分析技术进行有效分析,从而为微生物学提供新的见解。这种知识的获取证明了额外的且通常很费力的微流控实验是合理的。显然,在已经很复杂的微流控培养过程中集成芯片上的氧气测量和控制,以及图像分析工具的开发,可能是一项具有挑战性的工作。本文提出了一种全面的实验方法,用于在可控的氧气可用性条件下对活微生物进行时空单细胞分析。为此,一种透气的聚二甲基硅氧烷微流控培养芯片和一个低成本的3D打印微型培养箱被成功用于在延时显微镜观察期间控制微流控生长室内的氧气可用性。通过使用荧光寿命成像显微镜(FLIM)对氧气敏感染料RTDP的荧光寿命进行成像来监测溶解氧。使用内部开发的开源图像分析工具对从包含相差和荧光强度数据的生物学实验中获取的图像数据堆栈进行分析。最终的氧气浓度可以在0%至100%之间动态控制。通过培养和分析一种表达绿色荧光蛋白作为间接细胞内氧气指示剂的菌株,对该系统进行了实验测试。所展示的系统允许以单细胞分辨率对微生物和微生物生态学进行创新性的微生物学研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验