Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
Cell Mol Neurobiol. 2023 Oct;43(7):3179-3189. doi: 10.1007/s10571-023-01375-z. Epub 2023 Jul 6.
The application of glial cell line-derive neurotrophic factor (GDNF) to cell cultures and animal models has demonstrated positive effects upon dopaminergic neuronal survival and development, function, restoration, and protection. On this basis, recombinant GDNF protein has been trialled in the treatment of late-stage human Parkinson's disease patients with only limited success that is likely due to a lack of viable receptor targets in an advanced state of neurodegeneration. The latest research points to more refined approaches of modulating GDNF signalling and an optimal quantity and spatial regulation of GDNF can be extrapolated using regulation of dopamine as a proxy measure. The basic research literature on dopaminergic effects of GDNF in animal models is reviewed, concluding that a twofold increase in natively expressing cells increases dopamine turnover and maximises neuroprotective and beneficial motor effects whilst minimising hyperdopaminergia and other side-effects. Methodological considerations for measurement of dopamine levels and neuroanatomical distinctions are made between populations of dopamine neurons and their respective effects upon movement and behaviour that will inform future research into this still-relevant growth factor.
胶质细胞源性神经营养因子(GDNF)在细胞培养和动物模型中的应用已证明对多巴胺能神经元的存活和发育、功能、恢复和保护具有积极作用。在此基础上,重组 GDNF 蛋白已在晚期帕金森病患者的治疗中进行了试验,但仅取得了有限的成功,这可能是由于在神经退行性病变的晚期缺乏可行的受体靶标。最新的研究表明,需要更精细的方法来调节 GDNF 信号,并且可以通过调节多巴胺作为替代测量来推断 GDNF 的最佳数量和空间调节。对动物模型中 GDNF 对多巴胺能的影响的基础研究文献进行了回顾,结论是,自然表达细胞增加一倍会增加多巴胺的周转率,并最大限度地提高神经保护和有益的运动效果,同时最大限度地减少过度多巴胺能和其他副作用。对多巴胺水平的测量和多巴胺神经元种群及其对运动和行为的各自影响的神经解剖学区别进行了方法学考虑,这将为这一仍相关的生长因子的未来研究提供信息。