文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

疫苗增强的 CAR T 细胞与宿主免疫的串扰,以拒绝具有抗原异质性的肿瘤。

Vaccine-boosted CAR T crosstalk with host immunity to reject tumors with antigen heterogeneity.

机构信息

David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.

David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA.

出版信息

Cell. 2023 Jul 20;186(15):3148-3165.e20. doi: 10.1016/j.cell.2023.06.002. Epub 2023 Jul 5.


DOI:10.1016/j.cell.2023.06.002
PMID:37413990
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10372881/
Abstract

Chimeric antigen receptor (CAR) T cell therapy effectively treats human cancer, but the loss of the antigen recognized by the CAR poses a major obstacle. We found that in vivo vaccine boosting of CAR T cells triggers the engagement of the endogenous immune system to circumvent antigen-negative tumor escape. Vaccine-boosted CAR T promoted dendritic cell (DC) recruitment to tumors, increased tumor antigen uptake by DCs, and elicited the priming of endogenous anti-tumor T cells. This process was accompanied by shifts in CAR T metabolism toward oxidative phosphorylation (OXPHOS) and was critically dependent on CAR-T-derived IFN-γ. Antigen spreading (AS) induced by vaccine-boosted CAR T enabled a proportion of complete responses even when the initial tumor was 50% CAR antigen negative, and heterogeneous tumor control was further enhanced by the genetic amplification of CAR T IFN-γ expression. Thus, CAR-T-cell-derived IFN-γ plays a critical role in promoting AS, and vaccine boosting provides a clinically translatable strategy to drive such responses against solid tumors.

摘要

嵌合抗原受体 (CAR) T 细胞疗法有效地治疗人类癌症,但 CAR 识别的抗原丢失构成了主要障碍。我们发现,CAR T 细胞的体内疫苗增强会触发内源性免疫系统的参与,以规避抗原阴性的肿瘤逃逸。疫苗增强的 CAR T 促进树突状细胞 (DC) 向肿瘤募集,增加了 DC 对肿瘤抗原的摄取,并引发了内源性抗肿瘤 T 细胞的激活。这一过程伴随着 CAR T 代谢向氧化磷酸化 (OXPHOS) 的转变,并且严重依赖于 CAR-T 衍生的 IFN-γ。疫苗增强的 CAR T 诱导的抗原扩展 (AS) 使得即使初始肿瘤有 50% 的 CAR 抗原阴性,也能获得部分完全反应,并且通过 CAR T IFN-γ 表达的遗传扩增进一步增强了异质性肿瘤控制。因此,CAR-T 细胞衍生的 IFN-γ 在促进 AS 中发挥关键作用,疫苗增强提供了一种可临床转化的策略,以针对实体瘤驱动这种反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/de951d346c57/nihms-1908849-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/3047fc59bf56/nihms-1908849-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/45bb04c3e77f/nihms-1908849-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/9a9791d3c2c2/nihms-1908849-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/bfc40b31a05f/nihms-1908849-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/9750a252c81f/nihms-1908849-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/2a4204542a35/nihms-1908849-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/de951d346c57/nihms-1908849-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/3047fc59bf56/nihms-1908849-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/45bb04c3e77f/nihms-1908849-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/9a9791d3c2c2/nihms-1908849-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/bfc40b31a05f/nihms-1908849-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/9750a252c81f/nihms-1908849-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/2a4204542a35/nihms-1908849-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a30e/10372881/de951d346c57/nihms-1908849-f0008.jpg

相似文献

[1]
Vaccine-boosted CAR T crosstalk with host immunity to reject tumors with antigen heterogeneity.

Cell. 2023-7-20

[2]
CAR T cells ignite antitumor immunity.

Trends Immunol. 2023-10

[3]
Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor.

Science. 2019-7-12

[4]
CD19 chimeric antigen receptor-redirected T cells combined with epidermal growth factor receptor pathway substrate 8 peptide-derived dendritic cell vaccine in leukemia.

Cytotherapy. 2019-4-25

[5]
DC vaccine enhances CAR-T cell antitumor activity by overcoming T cell exhaustion and promoting T cell infiltration in solid tumors.

Clin Transl Oncol. 2023-10

[6]
Bispecific CAR T Cells against EpCAM and Inducible ICAM-1 Overcome Antigen Heterogeneity and Generate Superior Antitumor Responses.

Cancer Immunol Res. 2021-10

[7]
Metabolic reprogramming via an engineered PGC-1α improves human chimeric antigen receptor T-cell therapy against solid tumors.

J Immunother Cancer. 2023-3

[8]
Boosting CAR-T cell therapy through vaccine synergy.

Trends Pharmacol Sci. 2025-2

[9]
Strategies to overcome tumour relapse caused by antigen escape after CAR T therapy.

Mol Cancer. 2025-4-28

[10]
Building a novel TRUCK by harnessing the endogenous IFN-gamma promoter for cytokine expression.

Mol Ther. 2024-8-7

引用本文的文献

[1]
Boosting Dendritic Cell Function in Cancer.

Cancer Med. 2025-9

[2]
Directed evolution-based discovery of ligands for in vivo restimulation of chimeric antigen receptor T cells.

Nat Biomed Eng. 2025-8-25

[3]
Coordinating oncogenesis and immune evasion: KPNA2, GOLM1, and TK1 as novel CAR T-cell targets in lung adenocarcinoma.

Eur J Med Res. 2025-8-19

[4]
Lymph node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: phase 1 AMPLIFY-201 trial final results.

Nat Med. 2025-8-11

[5]
Lentinan enhances CAR-T cell potency in solid tumors by optimizing T cell differentiation.

Front Immunol. 2025-7-18

[6]
Advances and obstacles of T cell-based immunotherapy in gynecological malignancies.

Mol Cancer. 2025-7-26

[7]
Advances in Gene Therapy with Oncolytic Viruses and CAR-T Cells and Therapy-Related Groups.

Curr Issues Mol Biol. 2025-4-10

[8]
Vaccine therapies for glioma: clinical frontiers and potential breakthrough.

Front Oncol. 2025-6-25

[9]
T cells in cancer: mechanistic insights and therapeutic advances.

Biomark Res. 2025-7-15

[10]
Development of therapeutic cancer vaccines based on cancer immunity cycle.

Front Med. 2025-7-14

本文引用的文献

[1]
CAR immune cells: design principles, resistance and the next generation.

Nature. 2023-2

[2]
The future of engineered immune cell therapies.

Science. 2022-11-25

[3]
Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer.

Cancer Cell. 2022-9-12

[4]
Identification of Highly Cross-Reactive Mimotopes for a Public T Cell Response in Murine Melanoma.

Front Immunol. 2022

[5]
CAR T cell killing requires the IFNγR pathway in solid but not liquid tumours.

Nature. 2022-4

[6]
Mitochondrial translation is required for sustained killing by cytotoxic T cells.

Science. 2021-10-15

[7]
Dendritic cells in cancer immunology.

Cell Mol Immunol. 2022-1

[8]
Navigating CAR-T cells through the solid-tumour microenvironment.

Nat Rev Drug Discov. 2021-7

[9]
Immunotherapy-induced antibodies to endogenous retroviral envelope glycoprotein confer tumor protection in mice.

PLoS One. 2021

[10]
IFNγ Is Critical for CAR T Cell-Mediated Myeloid Activation and Induction of Endogenous Immunity.

Cancer Discov. 2021-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索